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ASSOCIATED WITH DEFORMED COMMUTATORS
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(Communicated by Palle E. T. Jorgensen)

Abstract. The generalized cyclic cohomology is introduced which is associ-
ated with q-deformed commutators xy − qyx. Some formulas related to the
trace of the product of q-deformed commutators are established. The Chern
character of odd dimension associated with q-deformed commutators is stud-
ied.

1. Introduction

In non-commutative differential geometry [1], the Chern character of a p-sum-
mable Fredholm module is expressed by the trace of some product of quantized
differentials df = [F, f ], where [F, f ] is the commutator Ff − fF and F is a
self-adjoint idempotent operator. In the odd dimension case, the Chern charac-
ter ch2n−1 is expressed as

tr
(
ω(a0, a1) · · ·ω(a2n−2, a2n−1)− ω(a2n−1, a0) · · ·ω(a2n−3, a2n−2)

)
where ω(x, y) = p(xy) − p(x)p(y) is the curvature of some mapping p (see also [2],
[6]).

Let A be an algebra over C, and let Cn be the space of n + 1-linear functions
on A. The basic operations in the cyclic cohomology are b′, b, t, etc. (cf. [1], [5]),
where b is the Hochschild boundary operation. Define Cnλ = { f ∈ Cn : tf = f }
and Af = (1 + t + · · · + tn)f , f ∈ Cn. Let pf =

∑n
j=0(n− j)tjf , f ∈ Cn.

Define S = bpb′. The restriction of 2πiS at Znλ = { f ∈ Cnλ : bf = 0 } coincides
with A. Connes’ S operator (cf. [1], [12]).

Related to the Chern character, in the previous papers [11], [12], the author
studied the cyclic cohomology associated with the product of commutators. Let X
and Y be two subalgebras (or subgroups) of a unital algebra A. Let Cm,n be the
space of multi-linear functions (or functions) f(x0, . . . , xm; y0, . . . , yn), xi ∈ X and
yj ∈ Y . Let bx, b′x, tx, Ax, Sx and by, b′y, ty, Ay, Sy be the operators b, b′, t, A, S

with respect to the x’s and y’s respectively. Let Cn,nλ = { f ∈ Cn,n : txf = tyf =
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1744 DAOXING XIA

f }. Suppose that there is a trace ideal J in A with trace τ . Assume that there is a
natural number k such that [x1, y1] · · · [xk, yk] ∈ J , for xi ∈ X and yj ∈ Y . Define

(1) φn(x0, . . . , xn; y0, . . . , yn) = τ [x0, y0] · · · [xn, yn], for n ≥ k − 1

and

(2) ψn(x0, . . . , xn; y0, . . . , yn) = τx0y0[x1, y1] · · · [xn, yn], for n ≥ k.

Then Axφn = Ayφn and it is denoted by Aφn.

Theorem A [11]. For n ≥ k, there is a Θn ∈ Cn,nλ such that Aφn = bxbyΘn+φ̂n+1

where

φ̂2m+p = (−1)m
(p+ 1)!

(p+ 2m)!
Smx S

m
y φp, p = k, k − 1,

and there is a Θ̃n ∈ Cn,nλ such that Aφn = bxbyΘ̃n + φ̃n+1 where

φ̃2m+p = (−1)m
p!

(p+ 2m)!
Smx S

m
y Aφp, for p = k + 1, k,

and the functions Θn and Θ̃n are expressed by ψp, . . . , ψn.

By means of Theorem A (in the case of k = 1) and the analytic model, the author
proved that the function trace

[
(λ̄0 − S∗)−1, (µ0 − S)−1

][
(λ̄1 − S∗)−1, (µ1 − S)−1

]
,

λi, µi ∈ sp(S), is a complete unitary invariant for some subnormal operator S with
trace class commutator [S∗, S] (cf. [14], [15]).

For the unbounded operator case, the author (cf. [9], [10]) also studied the
almost unperturbed Schrödinger pair of operators u and v which are self-adjoint
operators on a Hilbert space H satisfying the condition that

eiuseivt − eisteivteius ∈ L1(H), s, t ∈ R,

where L1(H) is the trace class of operators on H. If we denote eius and eivt by x
and y respectively, then q(x, y) = eist is a complex number determined by x and y.
Therefore instead of the commutator we have to study the trace class q-deformed

commutator {x, y}def
= xy − q(x, y)yx. By the way, now-a-day the study of the q-

deformed (or q-twisted) commutators becomes an interesting subject (cf. [3], [4], [7],
etc.). In [9] and [10], the author studied the form of cyclic one-cocycles associated
with q-deformed commutators, which has some application for establishing the
theory of principal distribution and others.

The first aim of the present paper is to generalize Theorem A to the q-deformed
commutators case. Suppose that there is a function q(x, y), x ∈ X , y ∈ Y , satisfying

q(1, y) = q(x, 1) = 1 and q(x1x2, y1y2) =
∏2
i,j=1 q(x

i, yi). Assume that there is a

natural number k such that {x1, y1} · · · {xk, yk} ∈ J , xi ∈ X, yj ∈ Y . We define
new functions φn and ψn by changing the commutator to a q-deformed commutator
in (1) and (2). In §4 of the present paper, we give Theorem 1 on these functions φn
and ψn which is a generalization of Theorem A in this q-deformed commutator case.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED CYCLIC COHOMOLOGY 1745

This generalization provides a possibility to study some complete unitary invariants
for some unbounded hyponormal operators or pseudo-differential operators u+ iv
where the pair of u and v is an almost unperturbed Schrödinger pair of operators.

In Theorem 1, the formulas are established for the functions φn, . . . on the
“manifolds”

Mn,n =
{

(x0, . . . , xn; y0, . . . , yn) ∈ Xn × Y n :
n∏

i,j=1

q(xi, yj) = 1
}
.

Off these manifolds Mm,m, the q-deformed commutator case is quite different from
the commutator case. The second aim of the present paper is to study the structure
(see Theorem 2 of §5) of the Chern character ch2n−1 of 2n−1 dimension associated
with the q-deformed commutator off the manifold Mm,m. In the lower dimension
cases, it is calculated in the corollary of Theorem 2 that the Chern characters ch1

and ch3 are boundaries of some cyclic cochain off Mn,n. Further study will be
needed to answer the question whether or not all the Chern characters chm of odd
dimensions associated with q-deformed commutators are boundaries of some cyclic
cochains off the manifold Mm,m. Theorem 2 may provide a basis for this study.
We have to point out that the Chern characters of odd dimension have not been
fully studied neither on the manifold Mn,n (for the q-deformed commutator case),
nor for the commutator case.

All of these studies we mentioned above are based on some new tools, the op-
erations δx, δ′x, τx and δy, δ′y, τy , which are the generalizations of bx, b′x, tx and
by, b′y, ty respectively. The formulation of this study is given in §2, which is a
set of modified definitions of Hochschild cohomology and cyclic cohomology. The
setting is that of a semidirect product of groups, i.e. a group X acting on a group
Y by automorphisms qx. This returns to the ordinary case if qx acts trivially, i.e.
qxy = y for all x, y. Although in §2 the concept of a q-deformed commutator is
not needed, the modified cyclic cohomology operations are introduced for obtaining
the formulas of Lemma 1 in §3. These are formulas connecting φn, ψn, etc., which
are the trace of products of some q-deformed commutators {x, y} = xy − qx(y)x,
x ∈ X , y ∈ Y . These formulas are neccessary for establishing Theorems 1 and 2.
It was not easy to find out those definitions in §2. Although in Theorem 1 and the
proof of Theorem 2, qx(y) is simply q(x, y)y, the formulation adopted in §2 and §3
is for general automorphisms qx for two reasons. First, even if we restrict ourselves
on the simpler case qx(y) = q(x, y)y, we cannot simplify either notation or formulas
in §2 and §3. The more important reason is that the present formulation may set
a basis for further study. As a matter of fact, in [13], the author studied a special
case about the perturbation of some partial differential operators in which qx(y) is
not q(x, y)y but the Chern character of dimension one is the boundary of a zero
cyclic cochain off a lower dimensional manifold. That case is not covered in §5 of
the present paper. Therefore the setting for general qx(·) in §2 may provide a tool
to calculate certain Chern characters of odd dimension associated with q-deformed
commutators in which qx(·) is not q(x, y)y.

In the statement of Theorem 2 and its Corollary, only cyclic cohomology is
involved, but in their proof, the formulas in generalized cyclic cohomology are
involved.

This paper is only an introduction to a circle of ideas whose natural continuation
will be explained in subsequent papers.
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1746 DAOXING XIA

2. Basic definitions

Let X and Y be two groups. Let 1 be the identity of X and Y . Suppose that
for every x ∈ X there is an automorphism qx : Y → Y satisfying qx1x2 = qx1qx2 ,
q1 = identity mapping. For m ≥ 0 and n ≥ 0, let Cm,n = Cm,n(X,Y ) be the space
of functions

fm,n(x0, . . . , xm; y0, . . . , yn), xi ∈ X, yj ∈ Y.

Define δ′x and δx : Cm,n −→ Cm+1,n in the following. For f ∈ Cm,n, x =
(x0, . . . , xm+1) and y = (y0, . . . , yn),

(δ′xf)(x; y) =
m−n∑
j=0

(−1)jf(x0, . . . , xjxj+1, . . . , xm+1; y)

+
m∑

j=m−n+1

(−1)jf(x0, . . . , xjxj+1, . . . , xm+1;

qxm−n+1(y0), . . . , qxj (y
j−m+n−1), yj−m+n, . . . , yn)

and

(δxf)(x; y) = (δ′xf)(x; y)

+ (−1)m+1f(xm+1x0, x1, . . . , xm; qxm−n+1(y0), . . . , qxm+1(yn)),

if m ≥ n; and

(δ′xf)(x; y) =
m∑
j=0

(−1)jf(x0, . . . , xjxj+1, . . . , xm+1;

y0, . . . , yn−m−2, qx0(yn−m−1), . . . , qxj(y
n−m+j−1), yn−m+j , . . . , yn)

and

(δxf)(x; y) = (δ′xf)(x; y) + (−1)m+1f(xm+1x0, . . . , xm;

qxm+1(y0), . . . , qxm+1(yn−m−2), qxm+1x0(yn−m−1), qx1(yn−m), . . . , qxm+1(yn)),

if 0 ≤ m < n. Define δ′y and δy : Cm,n −→ Cm,n+1 as follows. For f ∈ Cm,n,

x = (x0, . . . , xm) and y = (y0, . . . yn+1),

(δ′yf)(x; y) =
n−m−1∑
j=0

(−1)mf(x; y0, . . . , yjyj+1, . . . , yn+1)

+
n∑

j=n−m
(−1)jf(x; y0, . . . , yn−m−1, q−1

x0 (yn−m), . . . , q−1
xj−n+m(yj)yj+1, . . . , yn+1)

and

(δyf)(x; y) = (δ′yf)(x; y)

+ (−1)n−1f(x; yn+1y0, . . . , yn−m−1, q−1
x0 (yn−m), . . . , q−1

xm(yn)),
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GENERALIZED CYCLIC COHOMOLOGY 1747

if m < n; and

(δ′yf)(x; y) =
n∑
j=0

(−1)jf(x; q−1
xm−n(y0), . . . , q−1

xj+m−n(yj)yj+1, yj+2, . . . , yn+1)

and

(δyf)(x; y) = (δ′yf)(x; y)

+ (−1)n+1f(x; q−1
x0···xm−n(yn+1)q−1

xm−n(y0), q−1
xm−n+1(y1), . . . , q−1

xm(yn))

if m ≥ n ≥ 0. It can be verified through calculation that δ′
2

x = δ2
x = 0 and

δ′
2

y = δ2
y = 0. If qx = identity, then δx = bx and δy = by in [11]. These δx and δy

are the generalized Hochschild boundary operations in some sense.
Define τx : Cm,n −→ Cm,n and τy : Cm,n −→ Cm,n as follows. For f ∈

Cm,n, x = (x0, . . . , xm) and y = (y0, . . . , yn),

(τxf)(x; y) = (−1)mf(xm, x0, . . . , xm−1; qxm−n(y0), . . . , qxm(yn)),

(τyf)(x; y) = (−1)nf(x; q−1
x0···xm−n(yn), q−1

xm−n+1(y0), . . . , q−1
xm(yn−1))

if m ≥ n; and

(τxf)(x; y) =

(−1)mf(xm, x0, . . . , xm−1; qxm(y0), . . . , qxm(yn−m−1), qx0(yn−m), . . . , qxm(yn)),

(τyf)(x; y) =

(−1)nf(x; yn, y0, . . . , yn−m−2, q−1
x0 (yn−m−1), . . . , q−1

xm(yn−1))

if m < n. If qx = identity, then τx = tx and τy = ty in [12]. Through complicated
calculation it can be verified that the operations δx, δ

′
x, τx commute with δy, δ

′
y, τy.

We also have

(3) δ′x(1− τx) = (1− τx)δx, δ′y(1− τy) = (1− τy)δy.

These formulas are the generalizations of the formula b′(1 − t) = (1 − t)b in [5].
Define

αxf = (1 + τx + · · ·+ τmx )f, αyf = (1 + τy + · · ·+ τny )f

for f ∈ Cm,n which are the generalizations of operators Ax and Ay in [12]. Then

(4) αxδ
′
x = δxαx, αyδ

′
y = δyαy.

For n ≥ 0 let pn(z) =
∑n
j=0(n − j)zj. Define πxf = pm(τx)f and πyf = pn(τy)f

for f ∈ Cm,n. Define σx = δxπxδ
′
x and σy = δyπyδ

′
y. These are generalizations of

Connes’ operators Sx and Sy in [12]. Then σx commutes with σy. From (3) it is
easy to see that δ′xδxαx = −(1− τx)σx, δ′yδyαy = −(1− τy)σy. From this, we may
prove that σx commutes δxαx and σy commutes δyαy.
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1748 DAOXING XIA

3. Trace of product of deformed commutators

Suppose X and Y are also subgroups of an algebra A over C. Define

{x, y} = xy − qx(y)x, x ∈ X, y ∈ Y,

where qx satisfies the conditions in §2. This {x, y} is called the q-deformed com-
mutator of x and y. Suppose that there is a trace ideal J of A with a trace τ on
J , i.e. τ is a linear functional on J satisfying τ(ab) = τ(ba) for b ∈ J and a ∈ A.
Assume that there is a natural number k such that {x1, y1} · · · {xk, yk} ∈ J . For
n ≥ k, define ψn(x0, . . . , xn; y0, . . . , yn) = τx0y0{x1, y1} · · · {xn, yn}, for xj ∈ X ,
yj ∈ Y . Then ψn ∈ Cn,n. Define functions

ξn(x; y0, . . . , yn−1) = ψn(x; 1, y0, . . . , yn), n ≥ k,
ηn(x0, . . . , xn−1; y) = ψ(1, x0, . . . , xn; y), n ≥ k,
φn(x; y) = ψn+1(1, x0, . . . , xn; 1, y0, . . . , yn), n ≥ k − 1,

where x = (x0, . . . , xn) and y = (y0, . . . , yn). The following lemma gives the basic
relations between ψn, ξn, ηn, and φn−1.

Lemma 1. For n ≥ k,

ξn+1 = δxψn, ηn+1 = −τxδyψn,(5)

(1− τx)ξn = δ′xφn−1, (1− τy)ηn = δ′yφn−1,(6)

(1− τ−1
y )ξn = δxφn−1, (1− τ−1

x )ηn = δyφn−1,(7)

(1− τy)ψn = δ′yξn − τyφn, (1− τx)ψn = δ′xηn + φn.(8)

Proof. We only give the proofs of those formulas in which ξ’s are involved. The
others can be proved similarly. The basic formulas for deformed commutators are

{x1x2, y} = x1{x2, y}+ {x1, qx2(y)}x2(9)

and

{x, y1y2} = {x, y1}y2 + qx(y1){x, y2},(10)

for x, x1, x2 ∈ X and y, y1, y2 ∈ Y . To prove (5), by means of (9), we have

ξn+1(x; y) = τx0x1y0{x2, y1} · · · {xn+1, yn} − τx0qx1(y0)x1{x2, y1} · · · {xn+1, yn}
= ψn(x0x1, x2, . . . , xn+1; y)− ψn(x0, x1x2, . . . , xn+1; qx1(y0), y1, . . . , yn)

+ τx0qx1(y0){x1, qx2(y)}x2{x3, y2} · · · {xn+1, yn},

for x = (x0, . . . , xn+1) and y = (y0, . . . , yn). Continuing this process, we may
prove (5).

To prove (6), by means of (9), we have

ξn(x; y) = φn−1(x0x1, . . . , xn; y)− τ{x0, qx1(y0)}x1{x2, y1} · · · {xn, yn−1}.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



GENERALIZED CYCLIC COHOMOLOGY 1749

The last term of the right-hand side of the above formula equals

− φn−1(x0, x1x2, . . . , xn; qx1(y0), y1, . . . , yn−1)

+ τ{x0, qx1(y0)}{x1, qx1(y1)}x2{x3, y2} · · · .

Continuing this process, we may prove (6). By the definitions and (9), it is easy to
verify that

τxξn − τ−1
y ξn = δxφn−1 − δ′xφn−1.

Therefore (7) follows from (6). To prove (8), by means of (10), we observe that

ψn(x; y)− φn(x; y) = τx0{x1, y1} · · · {xn, yn}qx0(y0)

= ξn(x; y1, . . . , yn−1, ynqx0(y0))

− τx0{x1, y1} · · · {xn−1, yn−1}qxn(yn){xn, qx0(y0)}.

Continuing this process we may prove that ψn(x; y) − φn(x; y) equals

n+1∑
j=2

(−1)n+1−jξn(x; y1, . . . , yj−1qxj (y
j), qxj+1(yj+1), . . . , qxn+1(yn+1))

+ (−1)nψn(x; qx1(y1), . . . , qxn+1(yn+1)),

where xn+1 = x0, yn+1 = y0. Thus ψn − φn = −τ−1
y δ′yξn + τ−1

y ψn which proves
(8). �

4. A basic theorem

Let us consider a very important special case. Suppose that there is a function
q(· , ·) on X × Y satisfying

q(x1x2; y1y2) =
2∏

i,j=1

q(xi, yj), xi ∈ X, yi ∈ Y,(11)

and

q(1, y) = q(x, 1) = 1, x ∈ X, y ∈ Y.(12)

Let Q = {q(x, y) : x ∈ X, y ∈ Y } ⊂ C; then Q is a group. Let Ỹ = {cy : c ∈
Q, y ∈ Y }. Define qx(cy) = c2q(x, y)y, c ∈ Q, y ∈ Y . Then qx : Ỹ −→ Ỹ is an

isomorphism satisfying condition (1). Let C̃m,n = C̃m,n(X, Ỹ ) be the space of the

restriction of functions f in Cm,n(X, Ỹ ) satisfying the condition that

f(x; c0y0, . . . , cnyn) =
n∏
j=0

cjf(x; y0, . . . , yn)

for cj ∈ Q, yj ∈ Y . For example, ψn ∈ C̃m,n. Then C̃m,n is invariant with
respect to the set D = {δ′x, δx, τx, δ′y, δy, τy} of operations defined in Cm,n(X, Ỹ ).
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1750 DAOXING XIA

Let us consider the restriction on C̃m,n of those operations in D only. Then these
operations in D possess all the properties described in §2.

Let Mm,n = {(x0, . . . , xm; y0, . . . , yn) : xi ∈ X, yj ∈ Y,
∏m
i=0

∏n
j=0 q(x

i, yj) =

1} and Ĉm,n be the restriction of the functions in C̃m,n on Mm,n. An important

property of Ĉm,n is that τxαxf = αxf , τyαyf = αyf , f ∈ Ĉm,n. Define Cm,nλ =

{f ∈ Ĉm,n : τxf = τyf = f}. It is easy to see that αxφn(x; y) = αyφn(x, y) for
(x, y) ∈ Mn,n. Define αφn = αxφn = αyφn on Mn,n. Then αφn ∈ Cm,nλ . By the
same method in [12], using Lemma 1 and the formulas in §2 and §3, we may prove
the following theorem and omit the proof.

Theorem 1. For n ≥ k, there is a Θn ∈ Cn,nλ such that

αφn+1 = δxδyΘn + φ̂n+1, on Mn,n,

where

φ̂2m+p = (−1)m
(p+ 1)!

(p+ 2m)!
σmx σ

m
y φp,

for p = k, k − 1. For n ≥ k, there is a Θ̃n ∈ Cn,nλ such that

αφn+1 = δxδyΘ̃n + φ̃n+1, on Mn,n,

where

φ̃2m+p = (−1)m
p!

(p+ 2m)!
σmx σ

m
y αφp

for p = k + 1, k. Besides, the functions Θn and Θ̃n are expressed by ψn, . . . , ψp.

5. Chern character of odd dimension

As in the previous sections, assume that A is an algebra over C, and J is a
trace ideal in A with trace τ . Let X and Y be subgroups of A. Assume that
there is a function q(x, y), x ∈ X , y ∈ Y , satisfying conditions (11) and (12).
Assume that there is a natural number k such that {x1, y1} · · · {xk, yk} ∈ J . Define
∆ = ∆m,n(x0, . . . , xm; y0, . . . , yn) =

∏m
i=0

∏n
j=0 q(x

i, yj). Let ν = τxτy; then

(νf)(x0, . . . , xn; y0, . . . , yn) = f(xn, x0, . . . , xn−1; yn, y0, . . . , yn−1) for f ∈ Cn,n.

Lemma 2. For n ≥ k and ∆ 6= 1,

(13) ψn = (1−∆)−1αxφn − (1−∆)−2∆δxδyαxαyφn−1

and

(14) (1− ν)ψn = (1−∆)−1
[
−δ′x(δy − δ′y)τx + (δx − δ′x)δ′y

]
αxφn−1.

Proof. It is easy to see that αx(1−τx) = 1−∆ and αy(1−τy) = 1−∆−1. Applying
αx to both sides of the right equality in (8), we have (1−∆)ψn = δxαxηn + αxφn,
since αxδ

′
x = δxαx (see (4)). Similarly, from (6), we get (1−∆−1)ηn = δyαyφn−1.

Thus we obtain (13).
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From (2) and (1− ν) = (1− τx)τy + (1− τy) it is easy to calculate that

(15) (1− ν)δxαxδyαy = (1−∆)δ′xτyδyαy + (1−∆−1)δxαxδ
′
y.

On the other hand, it is easy to see that if νf = f , then ∆αyf = τxαxf . From
(13), (15) and the fact that (1− ν)αxφn−1 = 0, we obtain

(16) (1− ν)ψn = (1−∆)−1(−δ′xνδy + δxδ
′
y)αxφn−1.

From (3), it is easy to calculate that

(17) δ′xνδy − δxδ′y = δ′x(δy − δ′y)τx − (δx − δ′x)δ′y + δ′xδ
′
y(ν − 1).

From (16) and (17), (14) follows. �
Let W = { (x, y, c) : x ∈ X, y ∈ Y, c ∈ Q } . Define the product

(x0, y0, c0)(x1, y1, c1) =
(
x0x1, y0y1, c0c1q(x0, y1)

)
in W; then W is a group. Define a mapping fromW to A as p(x, y, c) = cyx. Then
the “curvature” of this mapping p is defined as ω(w0, w1) = p(w0w1)−p(w0)p(w1),
w0, w1 ∈ W. For n ≥ k, define the Chern character of dimension 2n − 1 (see [1]
and [6]) as

ch2n−1(w0, . . . , w2n−1)

= τ
(
ω(w0, w1) · · ·ω(w2n−2, w2n−1)− ω(w2n−1, w0) · · ·ω(w2n−3, w2n−2)

)
.

A function f(w0, . . . , wn) is said to be homogeneous if f
(
(u0, c0), . . . , (un, cn)

)
=∏n

j=0 c
jf
(
(u0, 1), . . . , (un, 1)

)
. For the homogeneous function f , we always rewrite

f
(
(u0, 1), . . . ,(un, 1)

)
as f(u0, . . . , un) or f(x0, . . . , xn; y0, . . . , yn) for uj =

(xj , yj), xj ∈ X , yj ∈ Y . It is obvious that ch2n−1 is homogeneous. Thus we
only have to study ch2n−1(u0, . . . , un) for (uj , 1) ∈ W. The Hochschild boundary
bf of a homogeneous function f is

n∑
j=0

(−1)jq(xj , yj+1)f(x0, . . . , xjxj+1, . . . , xn; y0, . . . , yjyj+1, . . . , yn)

+ (−1)n+1q(xn+1, y0)f(xn+1x0, . . . , xn; yn+1y0, . . . , yn).

A function F (fk, . . . , fl)(x
0, . . . , xm; y0, . . . , ym), fj ∈ Cj,j , j = k, . . . , l and xr ∈

X , ys ∈ Y , is said to be a linear functional if it is expressed as
∑N
s=1 cshs, where cs

is a function of q(xi, yj), i, j = 0, . . . ,m, and hs(x
0, . . . , xm; y0, . . . , ym) is of the

form

fj
(
xl01 · · ·xl0s0 , . . . , xlj1 · · ·xljsj ; yr01 · · · yr0t0 , . . . , yrj1 · · · yrjtj

)
for certain j ∈ {k, . . . , l} where (l01, . . . , l0s0 , . . . , lj1, . . . , ljsj ) is (a, a+ 1, . . . , a+
m) for some a, (r01, . . . , r0t0 , . . . , rj1, . . . , rjtj ) is (c, c + 1, . . . , c + m) for some c,
and xn = xn−m−1, yn = yn−m−1 for n > m.
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Theorem 2. There is a linear functional Fm(φk−1, . . . , φ2m−3) such that

ch2m−1

(
(x0, y0), . . . , (x2m−1, y2m−1)

)
= b(1−∆)−1(−1)txφ2m−2 + Fm(φk−1, . . . , φ2m−3).

Proof. Let n = 2m− 1 and f = −t−1
x chn. Then

f(x0, . . . , xn; y0, . . . , yn) = (1− ν)τ(v0 · · · vm−1)

where vj = x2jy2j
{
x2j+1, y2j+1

}
. From (9) and (10), through a complicated cal-

culation, we can prove that τ(v0 · · · vm−1) = ψn + Rn(ψn−1) +Gn(ψk, . . . , ψn−2),
where Gn(ψk, . . . , ψn−2) is a linear functional,

Rn(f) =
n−1∑
i=2

2[ i2 ]−1∑
j=0

(−1)i+j−1cijf(x0, . . . , xixi+1, . . . , xn; y0, . . . , yjyj+1, . . . , yn)

+
n−2∑
j=0

(−1)jcnjf(xn+1x0, x1, . . . , xn; y0, . . . , yjyj+1, . . . , yn),

and cij =
∏i
l=j+1 q(x

l, yl). We can prove that if f ∈ Cn−1,n−1, then

(18) (1− ν)Rn(f) + (−δ′x(δy − δ′y)τx + (δx − δ′x)δ′y)f = Qn
(
(1− ν)f

)
+ Sn(f),

where
(19)

Qn(g) =
n−1∑
i=2

i−2∑
j=0

(−1)i+j−1cijg(x0, . . . , xixi+1, . . . , xn; y0, . . . , yjyj+1, . . . , yn)

and Sn(f) = −t−1
x btx(f), if νf = f . From (13), Gn(ψk, . . . , ψn−2) can be expressed

as a linear functional Hn(φk−1, . . . , φn−3). From (13), (14), (18) and (19), we have

(1− ν)ψn + (1− ν)Rn(ψn−1)

= −t−1
x b(1−∆)−1txαxφn−1 − Sn

(
(1−∆)−2∆δxδyαxαyφn−2

)
,

which proves the theorem, where Fm = txSn
(
(1−∆)−2∆δxδyαxαyφn−2

)
− txHm.�

Corollary. ch1 and ch3 are boundaries of cyclic cochains.

Proof. By the proof of Theorem 2, F1 = 0. Thus ch1 is the boundary of a
cyclic zero-cochain. By formula (19), through calculation we may prove that F2 =
bA(1−∆)−2G, where A = (1 + ν + ν2),

G =
1

2
f1(x0, x1x2; y0, y1, y2)q(x0, y0)−1q(x1, y1)−1q(x2, y1y2)−1

− 1

2
f1(x0, x1x2; y1y2, y0)q(x1, y2) + f1(x0, x1x2; y1, y2y0)q(x2, y2)−1

− f1(x0, x1x2; y0y1, y2)q(x0, y0)−1q(x2, y2)−1

and f1 = α2
xτxφ1. Therefore ch3 is also the boundary of some cyclic 2-cochain. �

Remark. Although the Chern character defined here is based on the mapping from
the group W to the algebra A, it is not difficult to prove that Theorem 2 and
its corollary for the Chern character defined through the mapping form a suitable
group algebra of W to A.
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