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POLYNOMIALS WITH ROOTS MODULO EVERY INTEGER
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Abstract. Given a polynomial with integer coefficients, we calculate the

density of the set of primes modulo which the polynomial has a root. We also
give a simple criterion to decide whether or not the polynomial has a root
modulo every non-zero integer.

1. Introduction

In [BO] and [BH] the diophantine equation

P (x) = n! ,

where P is a polynomial with integer coefficients, was studied (we refer to [EO]
and [Gu, Sec.D25] for related equations and more information). On probabilistic
grounds, one expects that, if degP ≥ 2, then the equation has only finitely many
solutions. One case in which this is trivial is when the congruence

(1) P (x) ≡ 0 (modm)

happens to have no root for some integer m. This raises the following

Question. Given a polynomial P (x) ∈ Z[x], decide whether or not (1) has a
solution for every m.

The same question is also motivated by a more general result. A measure-
preserving system is a quadruple (X,B, µ, T ), in which (X,B, µ) is a probability
space, and T is a measure-preserving transformation thereof. A set R ⊆ N is a
Poincaré set if for any measure-preserving system (X,B, µ, T ) and A ∈ B with
µ(A) > 0 there exists some n ∈ R with µ(T−nA ∩ A) > 0 [Fu, Def.3.6]. An
interesting question is which “natural” sets of integers are Poincaré sets. It turns
out that, for P ∈ Z[x], the set {P (n) : n ∈ N} is a Poincaré set if and only if
(1) has a root for each m. A consequence is that, if P is such and S is a set of
integers of positive (upper Banach) density, then there exist s1, s2 ∈ S, s1 6= s2,
and n ∈ N such that s2 − s1 = P (n). This result was first proved by Sárközy for
the polynomial P (x) = x2 [Sá1] (see also [Sá2] and [Sá3], where other polynomials
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are dealt with). It does not seem to have been explicitly stated in the form above,
but certainly follows from the results and the discussion in [Fu, Ch.3]. For more on
this direction, see [Bo] (in particular, Theorem 6.6 there).

Another result involving polynomials that satisfy the property in question is due
to Kamae and Mendes France [KM]. The well-known difference theorem of van der
Corput states that, if (xn)∞n=1 is a sequence in R such that for every positive integer
h the sequence (xn+h − xn)∞n=1 is uniformly distributed modulo 1, then (xn)∞n=1 is
also uniformly distributed modulo 1 (see, for example, [KN]). Kamae and Mendes
France noted that there exist sets H ⊆N such that it suffices to check the difference
condition for each h ∈ H to obtain the same conclusion. One of their examples of
such a set H is the set of all values assumed by some integer polynomial satisfying
our condition.

Obviously, (1) is solvable for each m if P has a linear monic factor x− a. The
interest in the question stems from the fact that there are polynomials not having
a linear factor, which still enjoy this property.

Example 1. The polynomial

P (x) = (x2 − 13)(x2 − 17)(x2 − 221)

has no integer (or rational) roots, but has a root modulo every integer (see [BS,
p.3]).

It turns out that the question presented above is in fact decidable, and even
in much more generality ([A], [FS]). In this paper we present a relatively simple
answer to this question. We also find, given a polynomial P (x) ∈ Z[x], the density
of the set of primes p for which (1) has a solution for m = p. (The fact that this set
of primes has some Dirichlet density which is, moreover, a rational number, follows
as a very special case from a result of Ax [A].)

We wish to express our gratitude to M. Boshernitzan for his comments and
suggestions on this paper and to the referee for his helpful remarks.

2. The main results

Given P (x) ∈ Z[x], factorize it as a product of polynomials in Z[x], irreducible
over Q:

P (x) = h1(x) · . . . · hν(x) .

(Here we assumed implicitly that the greatest common divisor of the coefficients
of the polynomial P (x) = anx

n + · · · + a0 is 1 – otherwise the factorization is
non-unique. Of course, this has no bearing on the paper, since for our results P
may be replaced by P/ gcd(a0, a1, . . . , an), which is a polynomial that possesses
the desired property.) To state our theorem we need a few notation. First, let
L be the splitting field of P over Q and G =Gal (L/Q) the Galois group of this
extension. For 1 ≤ i ≤ ν, let θi be a fixed root of hi, and put Ki = Q(θi) and

Hi = Gal (L/Ki) ≤ G. Finally, set U =
ν⋃
i=1

Hi ⊆ G. We also need some constants.

Write:

hi(x) =

ni∑
j=0

aijx
j .
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Denote:
δi – the discriminant of hi;
ρi = ainiδi = R(hi, h

′
i) – the resultant of hi and h′i [vW, §35];

δ = ρ1 · . . . · ρν ;
δ = pα1

1 · . . . · p
αµ
µ – the prime power factorization of δ;

∆ = p2α1+1
1 · . . . · p2αµ+1

µ ;

D =

(
ν∏
i=1

δ
ni−1
ni

i

)n1!·...·nν !

.

Note that all these constants are integers, and are directly computable from the
polynomials h1, h2, . . . , hν .

Theorem 1. The following conditions are equivalent:
(a) P has a root mod m for every non-zero integer m;
(b) P has a root mod ∆, and

(2)
⋃
σ∈G

σ−1Uσ = G;

(c) P has a root mod ∆ and mod p for each prime p ≤ 2DA. (Here A is an
effective absolute constant, to be defined later.)

Remark 1. As follows from the results of Lagarias and Odlyzko [LO], under the
Generalized Riemann Hypothesis (henceforward GRH), the term 2DA in (c) may

be replaced by c1 (logD)
2
. Oesterlé [O] proved that one may take c1 = 70. Bach

[Ba] obtained further numerical results in this direction, but they are not general
enough for the purposes of the present paper (see the discussion in [Ba], p.376).

Example 2. Condition (2) reveals that, for P to have the property under con-
sideration without having rational roots, G has to be a union of proper subgroups
thereof. The smallest group for which this occurs is the non-cyclic group of order 4.
(Indeed, the condition is always fulfilled unless G is cyclic.) G is a union of three
subgroups of order 2, so that P must be of degree 6 at least. This is the case in
Example 1. With the group G = S3 one can obtain a polynomial of degree 5 having
the same properties:

P (x) = (x3 − 19)(x2 + x+ 1) .

In fact, in this case we have L = Q( 3
√

19, i
√

3), G = S3 and:

θ1 =
3
√

19, θ2 =
−1 + i

√
3

2
.

The subgroup H1 = Gal(L/Q( 3
√

19)) is of order 2, and the union of its conjugates is
the set of 4 elements of S3 of orders 1 and 2. The subgroup H2 = Gal(L/Q(i

√
3))

is of order 3. Thus condition (2) of Theorem 1 is satisfied. Now one calculates
routinely

δ1 = 33 · 192, δ2 = 3,

so that

δ = 34 · 192, ∆ = 39 · 195 .
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It is easily verified that the congruence

x2 + x+ 1 ≡ 0 (mod 195)

has a solution, and, with slightly more work, that the same holds for

x3 − 19 ≡ 0 (mod 39) .

Thus P is in fact an example as required.

Remark 2. It is easy to infer from Theorem 1 that there exists no polynomial of
degree less than 5 without rational roots possesing the property in question. Thus
the above example is minimal in this respect.

We mention in passing that, given a polynomial P satisfying the property under
consideration, we can generate out of it many polynomials having the same property.
In fact, solutions of (1), m being a high power of some fixed prime p, are all taken
care of by one of the factors hi of P . But then one may replace all other hj(x) by
hj(px) (or hj(p

lx) with an arbitrary l).

Example 3. In Example 2, congruences modulo powers of 2 are taken care of by
the first factor x3 − 19, so in the second factor we may replace x by 4x, say. Thus
the polynomial (x3 − 19)(16x2 + 4x+ 1) is a non-monic polynomial possessing the
property in question.

The density of a set T of primes is defined by

d(T ) = lim
x→∞

π(x, T )

π(x)
,

where π(x) is the number of all primes not exceeding x and π(x, T ) = |T ∩ [1, x]|
is the number of such primes belonging to T , provided that the limit exists. (Of
course, in view of the Prime Number Theorem, one can replace the denominator
on the right-hand side by x

log x .)

We recall that there is also a weaker notion of density, namely that of the Dirich-
let density. If the density of T exists, then so does the Dirichlet density, and the
two densities coincide.

Theorem 2. Given a polynomial P ∈ Z[x], the density of the set S of primes p
for which the congruence P (x) ≡ 0 (mod p) has a solution for m = p is

d(S) =

∣∣∣⋃
σ∈G

σ−1Uσ
∣∣∣

|G| .

Remark 3. V. Schulze [Schu1, Schu2] proved that the density in Theorem 2 exists
and is a rational number, and calculated it for some concrete polynomials. See also
[A], [FS] and [L] for more general but less explicit results.

Remark 4. Theorems 1.3 and 1.4 of [LO] imply the following quantitative version
of our Theorem 2:

(3) |π(x, S)− d(S) Lix| ≤ d(S) Lixβ + c2 |U |x exp

(
−c3

√
logx

|G|

)
,
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where d(S) is as in Theorem 2,

β = max

(
1− 1

4 logD
, 1− 1

c4D
1
|G|

)
,

and c2, c3, c4 are effective absolute constants. Under GRH, the right-hand side of
(3) may be replaced by

(3′) c5
(
d(S)
√
x log

(
Dx|G|

)
+ |U | logD

)
,

c5 being an effective absolute constant. This also follows from the results of [LO].
Oesterlé [O] obtained a version of (3′) including only explicit constants.

3. An upper bound for dL

Lemma 1. The absolute discriminant dL of the field L divides D, and in particular
dL ≤ D.

Proof. Fix i and write n = ni, aj = aij , θ = θi, K = Ki.

Let θ = θ(1), . . . , θ(n) be the conjugates of θ over Q. Consider the following basis
of K over Q:

ω1 = 1;
ω2 = anθ;
ω3 = anθ

2 + an−1θ;
. . . . .

ωn = anθ
n−1 + an−1θ

n−2 + . . .+ a2θ.
Since ω1, . . . , ωn are algebraic integers (see [Schm, p.183] for an explanation), we
have dK |d(ω1, . . . , ωn). But

d(ω1, . . . , ωn) = |det[ωkj ]|2 = δi,

where ωkj is obtained from ωk upon replacing θ by θ(j). Thus, dK |δi.
Note that we have dK(j) = dK for any j, where K(j) = Q(θ(j)). Hence the

discriminant dK′ of the field K ′ := K ′i = Q(θ(1), . . . , θ(n−1)) divides

n−1∏
j=1

(dK(j))
[K′:K(j)]

= (dK)(n−1)[K′:K]
∣∣δ(n−1)(n−1)!
i

Finally, the field L is the composite of K ′1, . . . ,K
′
ν, hence

dL
∣∣ ν∏
i=1

(
dK′i
)[L:K′i] ,

and the last product divides

ν∏
i=1

(
δ

(n−1)(n−1)!
i

)n1!...ni−1!ni+1!...nν !

= D,

which proves the lemma.
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4. Proof of Theorems 1 and 2

Let K be a subfield of L, P a prime ideal of L unramified over K, p the prime
ideal of K below P, and LP and Kp the corresponding completions. Since there
are natural embeddings

Gal (LP/Kp) ↪→ Gal (L/K) ↪→ Gal (L/Q),

we may suppose further that

Gal (LP/Kp) ≤ Gal (L/K) ≤ Gal (L/Q).

Let RL be the ring of integers of the field L. Recall that the Frobenius symbol

(L/K
P

) ∈Gal (LP/Kp) is defined uniquely by the property

(
L/K

P

)
(α) ≡ αNp mod P

for all α ∈ RL [Na, §7.3.1], and that Artin’s symbol[
L/K

p

]
=

{
σ

(
L/K

P

)
σ−1 : σ ∈ Gal (L/K)

}

is the conjugacy class of (L/K
P

) in Gal (L/K).

We need the following elementary property of Frobenius symbols. Let p be
unramified over Q, and let p ∈ Z be the prime below p. Denote fp = [Kp : Qp].
We claim that

(4)

(
L/K

P

)
=

(
L/Q

P

)fp

and

(5)

(
L/Q

P

)m
∈ Gal (L/K) ⇐⇒ fp |m.

In fact, (4) is well known and follows immediately from the definition. To prove

(5) note that (L/Q
P

) generates the cyclic group Gal (LP /Qp), and that

[Gal (LP /Qp) : Gal (L/K) ∩Gal (LP /Qp)]

= [Gal (LP /Qp) : Gal (LP /Kp)] = [Kp : Qp] = fp.

We deduce both Theorems 1 and 2 from the following statement.
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Lemma 2. Let p be a prime not dividing δ. Then

(6)

[
L/Q

p

]
∩ U 6= ∅

if and only if P (x) has a root in Qp.

We mention that according to Lemma 1 it follows in particular that p is unram-
ified in L.

Proof. Let pRL = P1 . . .Pτ be the decomposition of p in L. Then

(7)

[
L/Q

p

]
=

{(
L/Q

P1

)
, . . . ,

(
L/Q

Pτ

)}
.

Hence (6) is equivalent to the following: for some i and j

(8)

(
L/Q

Pj

)
∈ Hi.

Let p be the prime ideal of Ki below Pj . Then (5) yields that (8) is equivalent to

[ (Ki)p : Qp] = 1,

which may happen if and only if hi(x) has a root in Qp. This proves the lemma.

Proof of Theorem 1. (b) =⇒ (a): Instead of (a) we shall prove the following equiv-
alent statement:
(a′) P (x) has a root in Qp for every prime p.

So, fix a prime p. If it is does not divide δ, then P (x) has a root in Qp by (2)
and Lemma 2. Now let p divide δ. Let λ ∈ Z be the root of P (x) mod ∆. Then

|P (λ)|p < |δ|2p.

Hence for some i
|hi(λ)|p < |ρi|2p.

On the other hand, there exist polynomials a(x), b(x) ∈ Z[x] such that

a(x)hi(x) + b(x)h′i(x) = ρi.

Hence |h′i(λ)|p ≥ |ρi|p, and we get

|hi(λ)|p < |h′i(λ)|2p.

By Hensel’s lemma [CF, Ch.2, App.C] hi(x) has a root in Qp. Hence P (x) has
a root in Qp, which completes the proof of (b) =⇒ (a′).
(a) =⇒ (c): Trivial.
(c) =⇒ (b): We have to prove that any conjugacy class C of the group G intersects
U . As proved in [LMO, Theorem 1.1], there exists an effectively computable abso-
lute constant A with the following property. For any conjugacy class C there exists
a prime p ∈ Z, satisfying the following conditions:

(i) p is unramified in L;

(ii)

[
L/Q

p

]
= C;

(iii) p ≤ 2dAL .
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Fix such p, and prove that there exists λ ∈ Z such that

(9) |P (λ)|p < |δ|2p.

When p|δ, we take λ as a root of P (x) mod ∆. So let p not divide δ. By Lemma 1,
p ≤ 2DA, whence P (x) has a root λ mod p, and we get (9) since |δ|p = 1.

The same argument as above shows that the polynomial P (x) has a root in Qp.
Therefore S ∩ U 6= ∅ by Lemma 2. This concludes the proof.

Proof of Theorem 2. Let C be a conjugacy class of G. Denote

T (C) =

{
p :

[
L/Q

p

]
= C

}
.

Applying Chebotarev density theorem in the form given in [LO] or [Schu3], we

obtain d(T (C)) = |C|
|G| . Now by Lemma 2

d(S) =
∑

C∩U 6=∅
d(T (C)) =

∑
C∩U 6=∅

|C|
|G| =

∣∣⋃
σ∈G σ

−1Uσ
∣∣

|G| .

The proof is complete.
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Number Theory 42 (1992), 189–193.
[BS] Z. I. Borevich and I. R. Shafarevich, J. Number Theory, Academic Press, New York, 1966.
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