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(Communicated by Linda Keen)

Abstract. In this paper we examine a result of D. Sullivan according to which
two C1+α expanding endomorphisms of the circle are C1+α conjugate as soon
as they are symmetrically conjugate. We develop general a priori estimates
on the local distortion of quasisymmetric mappings and combine them with
the classical naive distortion lemma to present a complete proof of Sullivan’s
result. A new proof is offered at the end that renders unnecessary the use of
Markov partitions or the control of eigenvalues at periodic points.

1. Introduction

We say that a C1 endomorphism F : S1 → S1 is expanding if |DF (z)| > 1 for
all z ∈ S1. Such an F is easily seen to be a covering map, and if we let d be its
topological degree (|d| ≥ 2, necessarily), a well-known theorem of M. Shub [Sh]
states that F is topologically conjugate to z 7→ zd. The conjugacy is in general not
smooth, and it may even be purely singular with respect to Lebesgue measure.

One way to remedy this situation is to impose further smoothness on F . Thus,
if F is C1+α, i.e. if DF is α-Hölder continuous, one can show that, although still
arbitrarily bad from the differentiable viewpoint, the conjugacy in question is qua-
sisymmetric (cf. [Su1]). Recall that a mapping is quasisymmetric if it distorts
symmetric triples of points in its domain by only a bounded amount. If the distor-
tion goes to zero uniformly with the size of the triples, we say that the mapping is
symmetric, and if this last property holds only locally at some point q, we say that
the mapping is symmetric at q (see §2). In this note, our aim is to develop certain
a priori distortion estimates for quasisymmetric as well as symmetric mappings, in
order to give a complete proof of the following rigidity theorem, first stated by D.
Sullivan in [Su2] in a slightly weaker form.

Theorem. If the conjugacy between two C1+α expanding endomorphisms of S1 is
symmetric at a point, then it is C1+α.

The main tool to be employed here is the following classical result, the proof of
which is a standard geometric series majorization argument (cf. [SS]). If ϕ is any
α-Hölder continuous function on an interval in R or S1, we let ‖ ϕ ‖α denote its
α-Hölder norm there.
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Distortion Lemma. Let {fn : In → In+1}n≥1 be a sequence of C1+α diffeomor-
phisms between intervals In in R or S1, and assume that |Dfn(x)| ≤ λ < 1 for all

x ∈ In and all n ≥ 1. If β = λα sup ‖ log |Dfn| ‖1/nα < 1, then for all x, y ∈ I1 and
all n ≥ 1 ∣∣∣∣log

∣∣∣∣D(fn ◦ fn−1 ◦ · · · ◦ f1)(x)

D(fn ◦ fn−1 ◦ · · · ◦ f1)(y)

∣∣∣∣ ∣∣∣∣ ≤ (λ−αβ1− β

)
|x− y|α .

The hypotheses in this lemma are obviously satisfied if we let F be a C1+α

expanding endomorphism of the circle and accordingly take each fn to be an ap-
propriate branch of F−1, and it is only in this context that the lemma will be
used.

2. Quasisymmetric distortion

The length of an interval I in R or S1 is denoted by |I|; if x, y ∈ I, the distance
between x and y measured along I is denoted by either dI(x, y) or d(x, y; I).

Let I0, I1 be closed intervals in R or S1, and let ψ : I0 → I1 be an orientation-
preserving homeomorphism. If T ⊆ I0 is a sub-interval we define the quasi-
symmetric distortion MT = M(ψ, T ) of the restriction ψ|T to be the smallest C > 1
satisfying C−1|ψ(J)| ≤ |ψ(I)| ≤ C|ψ(J)| for all pairs of adjacent intervals I, J ⊆ T
of equal length. The map ψ is called (M -)quasisymmetric if MT ≤M <∞ for all
T ⊆ I0. If MT → 1 uniformly in T as |T | → 0 for intervals T containing a given
point q, then we say that ψ is symmetric at q. A homeomorphism which is sym-
metric at all points of its domain is called symmetric. Symmetric homeomorphisms
were first investigated in [GS1].

We shall need three lemmas on quasisymmetry. They are standard results in
the theory of quasiconformal mappings. For instance, Lemma 1 simply says that
quasisymmetric mappings are Hölder continuous. The classical proofs of these
results, as given say in [Ah], are based on the fact that quasisymmetric mappings are
precisely the boundary values of quasiconformal mappings (in the upper half-plane
or unit disk), and on certain inequalities involving the dilatations of qc-mappings.
For convenience, we present intrinsic one-dimensional proofs of these lemmas.

Lemma 1. Let ψ : I0 → I1 be a quasisymmetric homeomorphism. Then, if I ⊆ T
are intervals in I0 sharing an endpoint and satisfying θ = |I|/|T | ≤ 1/2, we have

θβT (θ) ≤ |ψ(I)|
|ψ(T )| ≤ θ

γT (θ) ,

where βT (θ) = (1 + 1
m−1 ) log2(1 +MT ), γT (θ) = (1− 1

m ) log2(1 +M−1
T ) and m ≥ 2

is the unique integer such that 2−m < θ ≤ 2−(m−1).

Proof. For each n ≥ 0 let Tn ⊆ T be the unique closed sub-interval of length 2−n|T |
sharing an endpoint with both T and I. Since ψ|T is MT -quasisymmetric, we have

1

1 +MT
≤ |ψ(Tn+1)|
|ψ(Tn)| ≤

MT

1 +MT
.
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Taking into account the decomposition |ψ(Tn)|/|ψ(T )| =
∏n−1
i=0 (|ψ(Ti+1)|/|ψ(Ti)|),

we deduce that

(1)

(
|Tn|
|T |

)log2(1+MT )

≤ |ψ(Tn)|
|ψ(T )| ≤

(
|Tn|
|T |

)log2(1+M−1
T )

,

for all n ≥ 0.

Now, if m = [log θ−1] + 1, we have Tm ⊆ I ⊆ Tm−1. Therefore, using the last
inequality in (1) we get

|ψ(I)|
|ψ(T )| ≤

(
|Tm−1|
|T |

)log2(1+M−1
T )

=

(
|Tm|
|T |

)γT (θ)

≤ θγT (θ) ,

which proves one half of Lemma 1. The other half follows similarly from the first
inequality in (1).

Lemma 2. Given a quasisymmetric homeomorphism ψ and an interval T in its
domain, let A be the unique affine, orientation-preserving homeomorphism that
maps T onto ψ(T ). Then dψ(T )(ψ(x), A(x)) ≤ 1

2 (MT − 1)|ψ(T )| for all x ∈ T .

Proof. We may assume that T = ψ(T ) = [0, 1], so that A(x) = x for all x. The
general case follows from this one by affine changes of coordinates. We let M be
M[0,1] in this proof.

Let (ψn)n≥0 be the successive dyadic approximations of ψ|[0, 1]. This means that
ψn : [0, 1]→ [0, 1] agrees with ψ at the points {j2−n : j = 0, 1, · · · , 2n} determining
the n-th dyadic partition of [0, 1] and is affine on each interval of that partition.
Clearly, (ψn)→ ψ in the C0 topology. Writing µ = M/(1 +M), an easy inductive
argument using the quasisymmetric condition satisfied by ψ shows us that

(2) ψ

(
j + 1

2n

)
− ψ

(
j

2n

)
≤ µn

for all j, 0 ≤ j < 2n, and all n ≥ 0.

Now let dn = supt∈[0,1] |ψn(t) − t|. Then we have d0 = 0 and d1 ≤ µ − 1
2 =

1
2

(
M−1
M+1

)
, while from (2) we get dn ≤ dn−1 + d1µ

n−1, which gives us

dn ≤ d1(1− µ)−1 ≤ 1

2
(M − 1) .

Letting n→∞ we deduce that supt∈[0,1] |ψ(t)−t| ≤ 1
2 (M−1), as was to be proved.

Remark. Obviously, the estimate provided by Lemma 2 yields non-trivial informa-
tion only when MT is near 1, as it happens at small scales when ψ is symmetric.
This estimate is related to Ahlfors’ maximal function (cf. [Ah, page 67]).

Our third lemma states that the composition of two quasisymmetric mappings
with small local distortion still has small local distortion. It is by no means the
sharpest result of its kind.
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Lemma 3. Given 0 ≤ ε ≤ 1/4 and intervals Ii, i = 0, 1, 2, let ψ0 : I0 → I1 and
ψ1 : I1 → I2 be quasisymmetric homeomorphisms such that M(ψ0, I0) ≤ 1 + ε and
M(ψ1, I1) ≤ 1 + ε respectively. Then M(ψ1 ◦ ψ0, I0) ≤ 1 + 3

√
ε.

Proof. Let us write M(ψi, Ii) = 1 + εi, so that εi ≤ ε. Taking J and J∗ to be
any two intervals in I0 of the same length and adjacent at some point p, we let
T = ψ0(J∗). We also let ∆ be the interval symmetric to ψ0(J) about ψ0(p) inside
I1 and consider the interval I = T \∆. Here we assume that ∆ ⊆ T ; otherwise we
simply interchange J and J∗. Then we have

(3)
|ψ1ψ0(J)|
|ψ1ψ0(J∗)| =

|ψ1(ψ0J)|
|ψ1(∆)|

|ψ1(∆)|
|ψ1(T )| .

This expression is clearly bounded above by 1 + ε1, so we only need a good lower
bound. The first ratio in the second member of (3) is bounded below by (1+ε1)−1.
From the fact that ψ0 is (1 + ε0)-quasisymmetric, we also see that θ = |I|/|T | ≤
ε0/(1 + ε0). Therefore Lemma 1 applied to ψ = ψ1 yields

|ψ1(∆)|
|ψ1(T )| ≥ 1− θγT (θ) .

Since here, in the notation of Lemma 1, we have m = m(θ) ≥ 3 as well as MT ≤
1 + ε0 ≤ 5/4, it follows that

γT (θ) ≥ 2

3
log2

9

5
>

1

2
.

Carrying these facts back into (3), we get

|ψ1ψ0(J)|
|ψ1ψ1(J∗)| ≥

1−√ε0

1 + ε1
≥ 1−

√
ε

1 + ε
,

which finally gives us

M(ψ1ψ0, I0) ≤ 1 + ε

1−
√
ε
≤ 1 + 3

√
ε .

3. Proof of the theorem

Let F be a C1 endomorphism of the circle and p ∈ S1 be F -periodic of minimum
period k > 0. Then the eigenvalue of p is defined as λF (p) = |(F k)′(p)|. We start
by examining the relationship between quasisymmetric distortion of a conjugacy
and eigenvalues at corresponding periodic points.

Proposition 4. Let F and G be C1+α expanding endomorphisms of the circle,
and let h : S1 → S1 be a quasisymmetric conjugacy between them. If p ∈ S1 is a
periodic point of F and T is any interval in S1 containing p, then

(4)

∣∣∣∣1− logλG(h(p))

logλF (p)

∣∣∣∣ ≤ log2MT .
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Proof. To simplify the notation, we shall write λF , λG instead of λF (p), λG(h(p))
in this proof. There is no loss of generality in assuming that p is an endpoint of T .
Let k > 0 be the smallest period of p, and for each n ≥ 0 let In be the image of T
under the inverse branch of Fnk that fixes p. For the purpose of what follows, we
may assume also that F is orientation preserving. In this case, since F is expanding,
we have both In ⊆ T and h(In) ⊆ h(T ) for all n ≥ 0.

By the Distortion Lemma and the mean value theorem applied to the composi-
tion F−nk, we have

(5)

∣∣∣∣log
|In|
|T | − log(λ−nF )

∣∣∣∣ ≤ c1|T |α
for all n ≥ 0 and some positive constant c1. The same procedure applied to G−nk

yields

(6)

∣∣∣∣log
|h(In)|
|h(T )| − log(λ−nG )

∣∣∣∣ ≤ c2|h(T )|α

for all n ≥ 0 and some positive constant c2. On the other hand, setting θn = |In|/|T |
we have θn < 1/2 for every sufficiently large n, and therefore by Lemma 1

βT (θn) log θn ≤ log
|h(In)|
|h(T )| ≤ γT (θn) log θn .

Taking into account that log θn < 0, this may be rewritten as

(7)

∣∣∣∣log
|h(In)|
|h(T )| − log

|In|
|T |

∣∣∣∣ ≤ (βT (θn)− γT (θn))| log θn| .

Putting (5), (6) and (7) together, we get

| logλF − logλG| ≤
1

n

{
c1|T |α + c2|h(T )|α +

[
βT (θn)− γT (θn)

]
| log θn|

}
for all sufficiently large n. Notice however that (5) also yields | log θn| ≤ c1|T |α +
n. logλF . Furthermore

lim
θ→0

[βT (θ)− γT (θ)] = log2(1 +MT )− log2(1 +M−1
T ) = log2MT .

Carrying these facts into the above inequality and letting n→∞, we finally get

| logλF − logλG| ≤ (log2MT )(log λF ) .

Proof of Theorem. Let F and G be the two expanding endomorphisms in the state-
ment, and let h be the conjugacy between them. We divide the proof into four
steps, gradually improving upon the smoothness of h.
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Step 1: Symmetry at one point implies symmetry. For ε > 0, let δε > 0 be the
smallest with the property that |h(J)| ≤ δε whenever |J | ≤ ε; observe that δε ↓ 0
as ε ↓ 0. Now let h be symmetric at q ∈ S1 and choose a non-degenerate interval I
containing q such that M(h, I) ≤ 1 + ε. Let z0 ∈ int(I) be a point whose forward
orbit {zn = Fn(z0)}n≥0 is dense in the circle; then in fact {zn}n≥N is dense also,
for all N ≥ 0. Since F is expanding, if N is sufficiently large, then for all n ≥ N
we can find an interval In ⊆ I centered at z0 such that

cε ≤ |Jn| ≤ ε ,

where Jn = Fn(In) and 0 < c < 1 is a constant depending only on F . Using
the fact that zn is not far from the center of Jn relative to its length, we see that
{int(Jn)}n≥N covers the circle. By the Distortion Lemma, there exists BF > 0
such that

(8) M(F−n, Jn) ≤ exp
{
BF |Jn|α

}
< 1 + 2BF ε

α ,

provided ε is sufficiently small. Likewise, there exists BG > 0 such that

(9) M(Gn, h(I)) ≤ exp
{
BG|h(Jn)|α

}
< 1 + 2BGδ

α
ε ,

for sufficiently small ε. Using M(h, I) ≤ 1 + ε and (8), we get by Lemma 3

(10) M(hF−n, Jn) ≤ 1 + 3
√
σε ,

where σε = max
{

2BF ε
α, ε
}

, provided ε is sufficiently small. Combining (9) and
(10) and applying Lemma 3 again we obtain

(11) M(h, Jn) = M(GnhF−n, Jn) ≤ 1 + 3
√
ωε ,

where now ωε = max
{

2BGδ
α
ε , 3
√
σε
}

, for sufficiently small ε. Since ωε ↓ 0 as ε ↓ 0,
we deduce that h is indeed a symmetric homeomorphism.

Step 2: Eigenvalues at corresponding periodic points are equal. This step is now a
clear corollary to Proposition 4, for if h is symmetric, then MT → 1 as |T | → 0 and
so the first member of (4) must vanish for every F -periodic point p ∈ S1.

Step 3: The conjugacy is bi-Lipschitz. This in turn becomes a fairly standard
Markov partition argument. Let z ∈ S1 be, say, a fixed point for F . For each

n ≥ 0, let M(n)
F be the partition of S1 determined by the dn points of F−n(z),

where d = degree of F . Using G−n(hz), define M(n)
G for each n ≥ 0 in similar

fashion. Notice that h induces an isomorphism M(n)
F → M(n)

G for each n ≥ 0. If

I ∈M(n)
F , then Fn(I) = S1 and in fact n is the smallest with this property. If F−n

denotes the inverse branch of Fn that maps S1−{z} onto int (I), then, by the mean
value theorem, |I| = |(F−n)′(ξ)|.L where L is the length of S1 and ξ ∈ S1 − {z}.
Similarly, |h(I)| = |(G−n)′(η)|.L, and so we have

|h(I)|
|I| =

|(G−n)′(η)|
|(F−n)′(ξ)| .
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But both I and h(I) contain points p and h(p) respectively such that Fn(p) = p,
Gn(h(p)) = h(p). By Step 2 the corresponding eigenvalues are equal. Using the
Distortion Lemma we deduce that there exists B > 1 such that B−1|I| ≤ |h(I)| ≤
B|I| for all I ∈ M(n)

F and all n ≥ 0.

Finally, if T ⊆ S1 is a non-degenerate interval and On(T ) = {I ∈ M(n)
F : I ⊆ T},

then
B−1

∑
I∈On(T )

|I| ≤
∑

I∈On(T )

|h(I)| ≤ B
∑

I∈On(T )

|I| ,

and if we let n→∞ we get B−1|T | ≤ |h(T )| ≤ B|T |. This proves h is bi-Lipschitz
as asserted.

Step 4: The conjugacy is C1+α. Let T ⊆ S1 be a closed interval and select an

infinite backward branch sequence: · · · F−→ Tn
F−→ Tn−1 −→ · · · F−→ T0 = T ,

where each arrow is a diffeomorphism. We have a corresponding sequence · · · G−→
h(Tn)

G−→ h(Tn−1) −→ · · · G−→ h(T0) = h(T ). For each n ≥ 0, let An : Tn → h(Tn)
be the unique affine orientation-preserving homeomorphism between those intervals
and set hn = Gn ◦An ◦ F−n : T → h(T ).

We claim that (hn)n≥0 → h|T in the C0 topology as n→∞. Note we can write
h = Gn ◦h ◦F−n for each n ≥ 0 because h is a conjugacy. Hence, if x ∈ T we have
for all n ≥ 0

dh(T )(hn(x), h(x)) = dh(T )

(
Gn ◦An ◦ F−n(x), Gn ◦ h ◦ F−n(x)

)
(12) = |(Gn)′(ξn)|.dh(Tn)(h ◦ F−n(x), An ◦ F−n(x))

for some ξn ∈ h(Tn), by the mean value theorem. Applying Lemma 2 and using
the B-Lipschitz condition on h given by Step 3, we have

dh(Tn)(h ◦ F−n(x), An ◦ F−n(x)) ≤ 1

2
(MTn − 1)B|Tn| .

But by the mean value theorem, |Tn| = |(F−n)′(ηn)|.|T | for some ηn ∈ T . Going
back to (12) we obtain

(13) dh(T )(hn(x), h(x)) ≤ 1

2
(MTn − 1)B|T |

{
|(F−n)′(ηn)|
|(G−n)′(Gnξn)|

}
,

where we have used the chain rule. We bound the term between brackets from
above as follows. By the Distortion Lemma, there exists a constant C1 > 1 such
that for all y ∈ T and all n ≥ 0

(14) C−1
1 ≤ |(F

−n)′(ηn)|
|(F−n)′(y)| ≤ C1 .

Similarly, there exists C2 > 1 such that for all z ∈ h(T ) and all n ≥ 0

(15) C−1
2 ≤ |(G−n)′(z)|

|(G−n)′(Gnξn)| ≤ C2 .
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Choosing y and z so that |(F−n)′(y)| = |Tn|/|T | and |(G−n)′(z)| = |h(Tn)|/|h(T )|
and multiplying the last inequalities of both (14) and (15) term by term yields

|(F−n)′(ηn)|
|(G−n)′(Gnξn)| ≤ C1C2

|Tn|
|h(Tn)|

|h(T )|
|T | ≤ C1C2B

2 .

Putting this into (13), we get for all x ∈ T and all n ≥ 0

dh(T )(hn(x), h(x)) ≤ 1

2
B3C1C2|T |(MTn − 1),

and since MTn → 1 as n→∞, the claim follows.
Using the Distortion Lemma one final time, we see that there exists C3 > 0 such

that for all x, y ∈ T and all n ≥ 0∣∣∣∣log
|Dhn(x)|
|Dhn(y)|

∣∣∣∣ ≤ C3|x− y|α .

This shows us at once that the sequence (Dhn)n≥0 is: (a) uniformly bounded
(by the mean value theorem), as well as (b) equicontinuous, because in fact it is
uniformly α-Hölder. Therefore by the Arzelá-Ascoli theorem, (Dhn)n≥0 is pre-
compact in the Cα-topology. If (Dhnj ) is a convergent subsequence and ϕ is its

α-Hölder limit, then, since by the claim above hnj
C0

−→ h in T , we deduce by a
standard 3ε-argument that h is differentiable in T and that Dh ≡ ϕ there. As T
was arbitrary, the conjugacy is indeed C1+α, and the theorem is proved.

Addendum

At the cost of making the proof less self-contained, we can actually discard Steps
2 and 3 in the following way. We know from the start that h is quasisymmetric, so
a fortiori it is Hölder of some exponent 0 < s < 1 (cf. [Ah]). In the notation used
in the proof, this gives us δε ≤ (const.)εs, which confronted with the expression
of ωε following (11) yields ωε ≤ (const.)εβ for all sufficiently small ε and some
0 < β < α. By a theorem of Carleson (cf. [Ca, Lemma 5]), h must then be a
C1+β-diffeomorphism, and we can go directly to Step 4.
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