A result on derivations
HTML articles powered by AMS MathViewer
- by Tsiu-Kwen Lee and Jer-Shyong Lin
- Proc. Amer. Math. Soc. 124 (1996), 1687-1691
- DOI: https://doi.org/10.1090/S0002-9939-96-03234-0
- PDF | Request permission
Abstract:
Let $R$ be a semiprime ring with a derivation $d$ and let $U$ be a Lie ideal of $R$, $a\in R$. Suppose that $ad(u)^n=0$ for all $u\in U$, where $n$ is a fixed positive integer. Then $ad(I)=0$ for $I$ the ideal of $R$ generated by $[U,U]$ and if $R$ is 2-torsion free, then $ad(U)=0$. Furthermore, $R$ is a subdirect sum of semiprime homomorphic images $R_1$ and $R_2$ with derivations $d_1$ and $d_2$, induced canonically by $d$, respectively such that $\overline ad_1(R_1)=0$ and the image of $U$ in $R_2$ is commutative (central if $R$ is 2-torsion free), where $\overline a$ denotes the image of $a$ in $R_1$. Moreover, if $U=R$, then $ad(R)=0$. This gives Bres̆ar’s theorem without the $(n-1)!$-torsion free assumption on $R$.References
- Matej Brešar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83–88. MR 1112014
- L. Carini and A. Giambruno, Lie ideals and nil derivations, Boll. Un. Mat. Ital. A (6) 4 (1985), no. 3, 497–503 (English, with Italian summary). MR 821089
- Chen-Lian Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728. MR 947646, DOI 10.1090/S0002-9939-1988-0947646-4
- Theodore S. Erickson, Wallace S. Martindale 3rd, and J. Marshall Osborn, Prime nonassociative algebras, Pacific J. Math. 60 (1975), no. 1, 49–63. MR 382379
- B. Felzenszwalb and Charles Lanski, On the centralizers of ideals and nil derivations, J. Algebra 83 (1983), no. 2, 520–530. MR 714263, DOI 10.1016/0021-8693(83)90237-5
- A. Giambruno and I. N. Herstein, Derivations with nilpotent values, Rend. Circ. Mat. Palermo (2) 30 (1981), no. 2, 199–206. MR 651152, DOI 10.1007/BF02844306
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- I. N. Herstein, Center-like elements in prime rings, J. Algebra 60 (1979), no. 2, 567–574. MR 549949, DOI 10.1016/0021-8693(79)90102-9
- V. K. Harčenko, Differential identities of semiprime rings, Algebra i Logika 18 (1979), no. 1, 86–119, 123 (Russian). MR 566776
- Charles Lanski and Susan Montgomery, Lie structure of prime rings of characteristic $2$, Pacific J. Math. 42 (1972), 117–136. MR 323839
- Charles Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc. 108 (1990), no. 1, 31–37. MR 984803, DOI 10.1090/S0002-9939-1990-0984803-4
- Wallace S. Martindale III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 238897, DOI 10.1016/0021-8693(69)90029-5
Bibliographic Information
- Tsiu-Kwen Lee
- Affiliation: Department of Mathematics, National Taiwan University, Taipei, Taiwan 10764, Republic of China
- Email: tklee@math.ntu.edu.tw
- Jer-Shyong Lin
- Affiliation: Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
- Email: jslin@math.nthu.edu.tw
- Received by editor(s): March 28, 1994
- Received by editor(s) in revised form: May 9, 1994, and December 9, 1994
- Communicated by: Ken Goodearl
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1687-1691
- MSC (1991): Primary 16W25
- DOI: https://doi.org/10.1090/S0002-9939-96-03234-0
- MathSciNet review: 1307545