The range of a ring homomorphism from a commutative $C*$-algebra
HTML articles powered by AMS MathViewer
- by Lajos Molnár
- Proc. Amer. Math. Soc. 124 (1996), 1789-1794
- DOI: https://doi.org/10.1090/S0002-9939-96-03236-4
- PDF | Request permission
Abstract:
We prove that if a commutative semi-simple Banach algebra $\mathcal {A}$ is the range of a ring homomorphism from a commutative $C^{*}$-algebra, then $\mathcal {A}$ is $C^{*}$-equivalent, i.e. there are a commutative $C^{*}$-algebra $\mathcal {B}$ and a bicontinuous algebra isomorphism between $\mathcal {A}$ and $\mathcal {B}$. In particular, it is shown that the group algebras $L^{1}(\mathbb {R})$, $L^{1}(\mathbb {T})$ and the disc algebra $A(\mathbb {D})$ are not ring homomorphic images of $C^{*}$-algebras.References
- R. B. Burckel, Characterizations of $C(X)$ among its subalgebras, Lecture Notes in Pure and Applied Mathematics, Vol. 6, Marcel Dekker, Inc., New York, 1972. MR 0442687
- R. W. Cross, On the continuous linear image of a Banach space, J. Austral. Math. Soc. Ser. A 29 (1980), no. 2, 219–234. MR 566287
- Joachim Cuntz, Locally $C^*$-equivalent algebras, J. Functional Analysis 23 (1976), no. 2, 95–106. MR 0448088, DOI 10.1016/0022-1236(76)90068-9
- J. M. G. Fell and R. S. Doran, Representations of $^*$-algebras, locally compact groups, and Banach $^*$-algebraic bundles. Vol. 1, Pure and Applied Mathematics, vol. 125, Academic Press, Inc., Boston, MA, 1988. Basic representation theory of groups and algebras. MR 936628
- P. A. Fillmore and J. P. Williams, On operator ranges, Advances in Math. 7 (1971), 254–281. MR 293441, DOI 10.1016/S0001-8708(71)80006-3
- Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
- L. Molnár, Algebraic difference between $p$-classes of an $H^{*}$-algebra, Proc. Amer. Math. Soc. (to appear).
- Theodore W. Palmer, Banach algebras and the general theory of $^*$-algebras. Vol. I, Encyclopedia of Mathematics and its Applications, vol. 49, Cambridge University Press, Cambridge, 1994. Algebras and Banach algebras. MR 1270014, DOI 10.1017/CBO9781107325777
- W. Rudin, Real and Complex Analysis, Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 1983.
Bibliographic Information
- Lajos Molnár
- Affiliation: Institute of Mathematics, Lajos Kossuth University, 4010 Debrecen, P.O.Box 12, Hungary
- Email: molnarl@math.klte.hu
- Received by editor(s): November 21, 1994
- Additional Notes: Research partially supported by the Hungarian National Research Science Foundation, Operating Grant Number OTKA 1652 and K&H Bank Ltd., Universitas Foundation.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1789-1794
- MSC (1991): Primary 46J05, 46E25
- DOI: https://doi.org/10.1090/S0002-9939-96-03236-4
- MathSciNet review: 1307551