Total curvature of branched minimal surfaces
Author:
Yi Fang
Journal:
Proc. Amer. Math. Soc. 124 (1996), 1895-1898
MSC (1991):
Primary 53A10
DOI:
https://doi.org/10.1090/S0002-9939-96-03296-0
MathSciNet review:
1322922
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An intrinsic, and much simpler, proof of a generalization of Jorge and Meeks' total curvature formula for complete minimal surfaces is given.
- 1. Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR 1215267
- 2. Luquésio P. Jorge and William H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203–221. MR 683761, https://doi.org/10.1016/0040-9383(83)90032-0
- 3. H. Blaine Lawson Jr., Lectures on minimal submanifolds. Vol. I, Monografías de Matemática [Mathematical Monographs], vol. 14, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977. MR 527121
- 4. Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53A10
Retrieve articles in all journals with MSC (1991): 53A10
Additional Information
Yi Fang
Affiliation:
Centre for Mathematics and its Applications, School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia
Email:
yi@maths.anu.edu.au
DOI:
https://doi.org/10.1090/S0002-9939-96-03296-0
Received by editor(s):
November 28, 1994
Additional Notes:
Supported by Australian Research Council grant A69131962.
Communicated by:
Peter Li
Article copyright:
© Copyright 1996
American Mathematical Society