Total curvature of branched minimal surfaces
HTML articles powered by AMS MathViewer
- by Yi Fang
- Proc. Amer. Math. Soc. 124 (1996), 1895-1898
- DOI: https://doi.org/10.1090/S0002-9939-96-03296-0
- PDF | Request permission
Abstract:
An intrinsic, and much simpler, proof of a generalization of Jorge and Meeks’ total curvature formula for complete minimal surfaces is given.References
- Ulrich Dierkes, Stefan Hildebrandt, Albrecht Küster, and Ortwin Wohlrab, Minimal surfaces. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 295, Springer-Verlag, Berlin, 1992. Boundary value problems. MR 1215267
- Luquésio P. Jorge and William H. Meeks III, The topology of complete minimal surfaces of finite total Gaussian curvature, Topology 22 (1983), no. 2, 203–221. MR 683761, DOI 10.1016/0040-9383(83)90032-0
- H. Blaine Lawson Jr., Lectures on minimal submanifolds. Vol. I, Monografías de Matemática [Mathematical Monographs], vol. 14, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1977. MR 527121
- Robert Osserman, A survey of minimal surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. MR 852409
Bibliographic Information
- Yi Fang
- Affiliation: Centre for Mathematics and its Applications, School of Mathematical Sciences, The Australian National University, Canberra, ACT 0200, Australia
- Email: yi@maths.anu.edu.au
- Received by editor(s): November 28, 1994
- Additional Notes: Supported by Australian Research Council grant A69131962.
- Communicated by: Peter Li
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1895-1898
- MSC (1991): Primary 53A10
- DOI: https://doi.org/10.1090/S0002-9939-96-03296-0
- MathSciNet review: 1322922