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Abstract. Let X be a real Banach space. Let T : X ⊃ D(T ) → 2X be m-
accretive with (T + I)−1 compact. Let C : X ⊃ D(T ) → X be such that
C(I + λT )−1 : X → X is condensing for some λ ∈ (0, 1). Let p ∈ X and
assume that there exists a bounded open set G ⊂ X and z ∈ D(T ) ∩ G such

that C(D(T ) ∩G) is bounded and

(∗) 〈u+Cx− p, j〉 ≥ 0,

for all x ∈ D(T )∩ ∂G, u ∈ Tx, j ∈ J(x− z). Then p ∈ (T +C)(D(T )∩G). A
basic homotopy result of the degree theory for I − A, with A condensing and

D(A) possibly unbounded, is used to improve and/or extend recent results by
Hirano and Kalinde.

1. Introduction-Preliminaries

The symbol X stands for a real Banach space with norm ‖ · ‖ and (normalized)
duality mapping J. In what follows, “continuous” means “strongly continuous”. The
symbols ∂D, D denote the strong boundary and the strong closure of the set
D, respectively. An operator T : X ⊃ D(T ) → Y, with Y another real Banach
space, is “bounded” if it maps bounded subsets of D(T ) onto bounded sets. It is
“compact” if it is continuous and maps bounded subsets of D(T ) onto relatively
compact sets. For an operator T : X ⊃ D(T ) → 2Y and a set G ⊂ D(T ) we set
TG =

⋃
{Tx : x ∈ G}. An operator T : X ⊃ D(T ) → 2X is “accretive” if for

every x, y ∈ D(T ) there exists j ∈ J(x− y) such that

(A) 〈u− v, j〉 ≥ 0 for every u ∈ Tx, v ∈ Ty.

An accretive operator T is “strongly accretive” if 0 in the right-hand side of (A)
is replaced by α‖x − y‖2, where α > 0 is a fixed constant. An accretive operator
T is called “m-accretive” if R(T + λI) = X for every λ > 0, where I denotes the
identity operator on X.

We denote by Br(0) the open ball of X with center at zero and radius r > 0.
For an m-accretive operator T , the “resolvents” Jλ : X → D(T ) of T are defined
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1812 A. G. KARTSATOS

by Jλ = (I + λT )−1 for all λ ∈ (0,∞). Jλ is a non-expansive mapping on X for
all λ > 0. Also the operator Tλ ≡ (1/λ)(I − Jλ) is a global Lipschitzian mapping
with Tλx ∈ TJλx, for every x ∈ X. For facts involving accretive operators, and
other related concepts, the reader is referred to Barbu [1], Browder [2], Cioranescu
[4], Deimling [5], Lakshmikantham and Leela [18] and Petryshyn [22]. For a survey
paper on compactness and accretivity, we cite the paper [14].

For a bounded set Ω ⊂ X, the Kuratowski measure of noncompactness, γ(Ω), is
defined by

γ(Ω) = inf{ε > 0 : Ω can be covered by a finite family of sets of diameter < ε}.

Let k ∈ (0,∞) be fixed. A continuous mapping g : X ⊃ D(g) → X is a “k-set-
contraction” if g(Ω) is bounded and γ(g(Ω)) ≤ kγ(Ω), for any bounded subset Ω of
D(g). It is called “condensing” if, for every non-empty, bounded and non-compact
subset Ω of D(g), g(Ω) is bounded and γ(g(Ω)) < γ(Ω). A k-set-contraction with
k < 1 is also called a “strict set-contraction”. Hirano and Kalinde gave in [11] the
following result.

Theorem A. Let T : X ⊃ D(T )→ 2X be m-accretive with (T +I)−1 compact. Let
C : X ⊃ D(T )→ X be bounded and such that C(I +λT )−1 : X → X is condensing
for some λ ∈ (0, 1). Let p ∈ X and assume that there exists a constant r > 0 and
z ∈ D(T ) such that ‖z‖ < r and

(∗) 〈u+ Cx− p, j〉 ≥ 0,

for all x ∈ D(T ) with ‖x‖ ≥ r, all u ∈ Tx and all j ∈ J(x−z). Then p ∈ R(T +C).

Our main purpose in this paper is to improve this result. Namely, we show
that the above theorem is true with (∗) holding for just x ∈ D(T ) ∩ ∂G, where
G is an open and bounded set in X containing the point z. We also assume the
boundedness of the operator C only on the set D(T )∩G. We do this by applying a
degree theory for mappings of the type I−T, where T is condensing and defined on
the closure of a possibly unbounded open set. A good account of the degree theory
for 1-set-contractions and condensing mappings can be found in the book of Lloyd
[20, p. 92].

The results of this paper, as well as a good number of papers in the references,
have applications in the control theory with preassigned responses (cf. Kaplan and
the author [12]) and the construction of methods of lines (cf. [15]). For other recent
results of this nature, we refer to the papers by Ding and the author [6], Guan [7],
[8], Guan and the author [9], [10], and the papers [13] and [17].

2. Main results

Let G denote an open subset of X. In the next theorem we sketch the proof
of how we can extend the concept of a degree function for mappings I − T , with
T : G→ X condensing and G bounded, to such mappings with unbounded domains
G and T (G) bounded. In this connection, we make reference to the four degree
axioms ((I)-(IV)) in Lloyd’s book [20, p. 73]. We denote by coG the convex hull of
the set G.
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PERTURBATIONS OF m-ACCRETIVE OPERATORS 1813

Theorem 1. Let G be a non-empty open subset of X and let T : G → X be
condensing. Assume that the set T (G) is bounded. Let p ∈ X be such that p 6∈
(I − T )(∂G). Then there exists a degree function d(I − T,G, p) which satisfies the
four axioms (I)-(IV).

Proof. We follow the approach of Lloyd [20, pp. 95-101]. We let

Σk(G) ≡ {φ : G→ X : φ ≡ I − T, where T is a k-set-contraction

with T (G) bounded},

Γ(G) ≡ {φ : G→ X : φ ≡ I − T, where T is condensing with T (G) bounded}.

Obviously, Σk(G) ⊂ Γ(G), for k < 1. We define first a degree function for mappings
in Σk(G) provided that k < 1. To this end, we note that every function in the family
Γ(G) is bounded and that it is also proper (and thus closed) by a proof identical to
that of Lemma 6.2.1 in Lloyd’s book. In particular, every function in Σk(G), k < 1,
is also bounded and proper. Given a function φ ≡ I − T ∈ Σk(G), k < 1, we let

∆1 ≡ coT (G) and, inductively,

∆n ≡ coT (∆n−1 ∩G), n = 2, 3, . . . .

Since T (G) is bounded, each set ∆n is also bounded. Moreover, each set ∆n is
closed and convex, {∆n} is a decreasing sequence and the set

∆ ≡
∞⋂
n=1

∆n

is non-empty, convex and compact. Since the set G∩∆ is closed, Dugundji’s theorem
says that the mapping T, restricted to the set G ∩∆, has a continuous extension

T̃ to all of X. This function T̃ has values in the set coT (G ∩∆) ⊂ co∆ = ∆ and

coincides with T on the set G∩∆. Since the values of the function T̃ on the set G∩∆
lie in the compact set ∆, the Nagumo degree (cf. [21]) d(I− T̃ , G, 0) is well defined,

provided that 0 6∈ (I− T̃ )(∂G). If 0 6∈ φ(∂G) we define d(φ,G, 0) ≡ d(I− T̃ , G, 0). If
p 6∈ φ(∂G), we define d(φ,G, p) ≡ d(φ − p,G, 0). A careful examination of the
material on pages 97-100 of Lloyd’s book shows that this degree function has the
four properties (I)-(IV).

Given a function φ ≡ I − T ∈ Γ(G), we let

δ ≡ (1/3)ρ(0, φ(∂G)),

where ρ denotes the distance function between two sets. We know that ρ > 0, for
0 6∈ φ(∂G), because the set φ(∂G) is closed. If 0 6∈ φ(∂G), we define d(φ,G, 0) ≡
d(I − g,G, 0), where g : G → X is any strict set-contraction such that g(G) is
bounded and

sup
x∈G
‖T (x)− g(x)‖ < δ.

If p 6∈ φ(∂G), we let d(φ,G, p) ≡ d(φ − p,G, 0). Again, it is easy to see that this
degree function is well defined and has the four basic degree properties (I)-(IV).�

We are now ready for our main result.
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1814 A. G. KARTSATOS

Theorem 2. Let T : X ⊃ D(T )→ 2X be m-accretive with (T + I)−1 compact. Let
C : X ⊃ D(T ) → X be such that C(I + λT )−1 : X → X is condensing for some
λ ∈ (0, 1). Let p ∈ X and assume that there exists a bounded open set G ⊂ X and
z ∈ D(T ) ∩G such that C(D(T ) ∩G) is bounded and

(∗) 〈u+ Cx− p, j〉 ≥ 0,

for all x ∈ D(T )∩∂G, all u ∈ Tx and all j ∈ J(x−z). Then p ∈ R(T+C). Actually,
p ∈ (T + C)(D(T ) ∩G).

Proof. We show first that we may assume z = 0 ∈ D(T )∩G and 0 ∈ T (0). In fact,

if this is not true, we consider the new operators T̃ , C̃ defined by

T̃ x ≡ T (x+ z)− v, C̃x ≡ C(x+ z) + v, x ∈ D̃(T ),

where v is a fixed point in T (z), D(T̃ ) ≡ D(T ) − z. We also set G̃ ≡ G − z. It is

easy to see the operator T̃ is m-accretive on D(T̃ ). To show the compactness of the

resolvent (I + T̃ )−1, and hence any resolvent of T̃ (by the resolvent identity), we

note first that the m-accretivity of T̃ implies the continuity of this resolvent. Let
{yn} be a bounded sequence in X and let

xn = (I + T̃ )−1yn.

Then
yn = xn + ṽn = xn + vn − v, n = 1, 2, . . . ,

where ṽn ∈ T̃ xn and vn ∈ T (xn + z). From

yn = (xn + z) + vn − (v + z),

we obtain that
(xn + z) + T (xn + z) 3 yn + (v + z),

or
xn = (I + T )−1[yn + (v + z)]− z,

which, by the compactness of (I + T )−1, implies the existence of a convergent

subsequence of {xn}. This finishes the proof of the compactness of (I + T̃ )−1.

We now show that the operator C̃(I+λT̃ )−1 is condensing. To this end, we seek
to express this operator in terms of the operator C(I + λT )−1. In fact, letting

J̃λ ≡ (I + λT̃ )−1

and
u ≡ J̃λy = (I + λT̃ )−1y ∈ D(T̃ ),

for some y ∈ X, we have that there exists w ∈ D(T ) such that u = w − z and

y ∈ u+ λT̃u = u+ λ(T (u+ z)− v) = w − z + λT (w) − λv.
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PERTURBATIONS OF m-ACCRETIVE OPERATORS 1815

This says that
w = (I + λT )−1(y + z + λv),

i.e., that

J̃λy = (I + λT̃ )−1y = (I + λT )−1(y + z + λv)− z = Jλ(y + z + λv)− z.

Finally,

C̃J̃λy = C(J̃λy + z) + v = (CJλ)(y + z + λv) + v.

Since γ(B+ q) = γ(B), for any bounded subset B of X and any q ∈ X, we have the

condensity of the operator C̃J̃λ. To see that (∗) is satisfied with z = 0, it suffices
to observe that

〈(w − v) + (C(u+ z) + v)− p, j〉 ≥ 0,

for every u ∈ D(T̃ ) ∩ ∂G̃, every w ∈ T (u + z) and every j ∈ J(u). It is also easy

to see that the set C̃(D(T̃ )∩ G̃) is bounded. Thus, it suffices to prove the theorem
with z = 0 and 0 ∈ T (0).

As in Theorem 1 of [11], we are planning to solve the problem

(1) Tλy + CJλy = p.

Since Tλy ∈ TJλy, y ∈ X, the solvability of (1) leads immediately to the solvability
of Tx+ Cx 3 p if we let x = Jλy. Also, Equation (1) can be rewritten as

(1/λ)(I − Jλ)y + CJλy = p,

or (I − S)y = 0, where
Sy ≡ (I − λC)Jλy + λp.

Unlike [11], we consider the homotopy

H(t, y) ≡ y − tSy, (t, y) ∈ [0, 1]× U,

where
U = (I + λT ) (D(T ) ∩G) .

Since the operator Jλ is a continuous mapping on all of X, its inverse, (I + λT ),
is a set-valued mapping that maps relatively open (closed) sets of its domain D(T )
onto open (closed) sets of the space X. Because of this, the set U is open and the
set

(I + λT )
(
D(T ) ∩G

)
is closed. Because of this, we have

(I + λT )
(
D(T ) ∩G

)
= (I + λT )

(
D(T ) ∩G

)
= (I + λT ) (D(T ) ∩G) ∪ (I + λT ) (D(T ) ∩ ∂G)

⊃ (I + λT ) (D(T ) ∩G)

= (I + λT ) (D(T ) ∩G) ∪ ∂ ((I + λT ) (D(T ) ∩G)) ,
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which implies that (I + λT )(D(T ) ∩ ∂G) ⊃ ∂((I + λT )(D(T ) ∩G)). Since

(I + λT ) (D(T ) ∩G) ⊂ (I + λT )
(
D(T ) ∩G

)
,

the homotopy H(t, y) is well-defined. It is also a condensing mapping in y, for
every t ∈ [0, 1], because of the compactness of the operator Jλ, the fact that CJλ is
condensing and λ ∈ (0, 1). Since Jλ maps the set U onto the bounded set D(T )∩G
and C(D(T )∩G) is bounded, the operator S has a bounded range and we may (and
do) apply the degree function from Theorem 1 to the mapping H(t, y). In order to
obtain a solution y ∈ U to the equation H(1, y) = 0, which will provide us with a
solution of (1) lying in D(T )∩G, we need to show that H(t, y) = 0 has no solution
lying in the set ∂U, for any t ∈ (0, 1). Here, we are using this fact, 0 ∈ U, and the
fact that if 0 6∈ (I − S)(∂U), then we have

d(I − tS, U, 0) = d(I, U, 0) = 1, t ∈ [0, 1].

Assume that there is t ∈ (0, 1) and a point yt ∈ ∂U such that H(t, yt) = 0. Then
we have

yt = t[(I − λC)Jλyt + λp].

If we let xt = Jλyt, then the above imply that xt ∈ D(T ) ∩ ∂G and the equation

xt + λwt = t[(I − λC)xt + λp]

holds, for some wt ∈ Txt. Thus,

(2) (1− t)xt + λ[wt + t(Cxt − p)] = 0.

Evaluating any functional jt ∈ J(xt) on this equation, we get

(1− t)‖xt‖2 + λ〈wt + t(Cxt − p), jt〉 = 0

and, since t ∈ (0, 1) and xt 6= 0,

〈wt + t(Cxt − p), jt〉 < 0.

Let us now pick jt ∈ J(xt) such that

〈wt, jt〉 ≥ 0.

We can do this because 0 ∈ T (0) and T is accretive. If

〈Cxt − p, jt〉 ≥ 0,

then we have a contradiction. Let us assume that

〈Cxt − p, jt〉 < 0.

Then
〈wt, jt〉 < −t〈Cxt − p, jt〉 < −〈Cxt − p, jt〉,
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or
〈wt + Cxt − p, jt〉 < 0,

which is a contradiction to our assumed boundary condition. The proof is com-
plete. �

The compactness of the resolvents of an m-accretive operator T appears in a
necessary and sufficient condition for the compactness of the semigroup generated
by T. If T is time-dependent, then the compactness of its resolvents is often one
of the necessary conditions for the compactness in x of the evolution operator
U(t, s)x, s < t, generated by T. For such a compact evolution operator and related
material, we cite the papers [14], [16] and several of the references therein.

In order to be able to apply the above proof to the case of a possibly unbounded
operator C, we must impose a condition on the operator T so that whenever yt, in
the proof of Theorem 2, lies on the boundary of a certain open set B, we have that
xt satisfies the boundary condition (∗). Naturally, the degree function of Theorem
1 will be well defined if (C(I + λT )−1)(B) is a bounded set. The following result
reflects this situation and is actually more general than Theorem 2. However, it is
rather difficult to check whether its boundary condition is satisfied in such a degree
of generality. We assume, for convenience, that 0 ∈ D(T ) and 0 ∈ T (0).

Theorem 3. Let T : X ⊃ D(T ) → 2X be m-accretive with (T + I)−1 compact,
0 ∈ D(T ) and 0 ∈ T (0). Let C : X ⊃ D(T )→ X be such that C(I+λT )−1 : X → X
is condensing, for some λ ∈ (0, 1). Let p ∈ X and assume that there exists an open
set B ⊂ X such that 0 ∈ B, 0 6∈ (I + λT )−1(∂B), the set (C(I + λT )−1)(B) is
bounded and

(∗) 〈u+ Cx− p, j〉 ≥ 0,

for all x ∈ (I + λT )−1(∂B), u ∈ Tx and j ∈ Jx. Then p ∈ R(T + C).

Proof. The proof follows exactly as in Theorem 2. In fact, proceeding as in the
proof of Theorem 2, we have that the homotopy H(t, x) is now defined on [0, 1]×B
and the equation (2) is impossible for t ∈ (0, 1), yt ∈ ∂B and xt = Jλyt. �

As a corollary to this theorem, we obtain Theorem 3 of Hirano and Kalinde
[11]. Their proof was based on the proof of Theorem 1 in [11].

Corollary 1. Let T : X ⊃ D(T )→ 2X be m-accretive with (T +I)−1 compact. Let
C : X ⊃ D(T ) → X be such that C(I + λT )−1 : X → X is condensing, for
some λ ∈ (0, 1). Let p ∈ X and assume that there exists a positive constant b and
z ∈ D(T ) such that ‖z‖ < b, T z is bounded and the inequality (∗) is satisfied
for all x ∈ D(T ), u ∈ Tx with max{‖x‖, ‖u‖} > b and all j ∈ J(x − z). Then
p ∈ R(T + C).

Proof. We note first that if T̃ , C̃ are as in Theorem 2, then, for every x ∈ D(T̃ ), w =

u− v ∈ T̃ x = T (x+ z)− v, j ∈ Jx such that

max{‖x+ z‖, ‖u‖}> b,

we have

〈w + C̃x− p, j〉 = 〈u− v + (C(x + z) + v)− p, j〉 = 〈u+ C(x + z)− p, j〉 ≥ 0.
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We apply Theorem 3 and its proof by taking B to be the open ball Br(−z). Here,
the radius r is chosen so that r > b+ 2λM, where

M = max {b, sup{‖u‖ : u ∈ Tz}} .

In fact, 0 ∈ Br(−z) and if yt ∈ ∂Br(−z), then ‖yt + z‖ = r and xt = J̃λyt ∈ D(T̃ )
satisfies (xt + z) + λ(u − v) = yt + z, where u ∈ T (xt + z). We show that xt 6= 0
and that either ‖xt + z‖ > b or ‖u‖ > b. The relation

‖(xt + z) + λ(u− v)‖ = r > b+ 2λM

implies that either ‖xt + z‖ > b or ‖u − v‖ > 2M. In the first case, we cannot
have xt = 0 because ‖z‖ ≤ b. In the second case, if xt = 0, then u ∈ Tz and
2M ≥ ‖u− v‖ > 2M, i.e., a contradiction. Moreover, if the second case holds, then
‖u‖ > 2M −‖v‖ ≥ 2M −M = M ≥ b. Thus, all the assumptions of Theorem 3 are
satisfied and the proof is complete. �

The following result extends Theorem 7 of [11] to the effect that we only require
a local boundary condition.

Theorem 4. Let T : X ⊃ D(T )→ 2X be m-accretive and let C : X ⊃ D(T )→ X
be such that C([(λ + n)/n]I + λT )−1 : X → X is compact, for some λ ∈ (0, 1) and
all integers n ≥ n0, where n0 is a positive integer. Let p ∈ X and assume that there
exists a bounded open set G ⊂ X such that 0 ∈ D(T )∩G, C(D(T )∩G) is bounded
and

(∗) 〈u+ Cx− p, j〉 ≥ 0,

for all x ∈ D(T ) ∩ ∂G, all u ∈ Tx and all j ∈ Jx. Then p ∈ R(T + C). Actually,

p ∈ (T + C)(D(T ) ∩G).

Proof. We only consider n ≥ n0. As in [11], we observe that, for the mapping
Vn ≡ T + (1/n)I, the resolvent (I + λVn)−1 is Lipschitz continuous with Lipschitz
constant n/(n+ λ). Thus, it is condensing. Also, the boundary condition (∗) holds
true for the mapping Vn in place of T in Theorem 1. Using the proof of Theorem
1 with Vn in place of T (the homotopy H(t, x) is still condensing in x), we obtain
that the problem

Tx+ Cx+ (1/n)x 3 p

has a solution xn ∈ D(T ) ∩G. Thus, {xn} is a bounded sequence. This says that
xn/n→ 0 and completes the proof of the theorem. �

3. Discussion-Example

It is now apparent that Theorems 2-4 can be extended to a variety of situations
involving perturbations of m-accretive operators. For example, the “inner product”
conditions in these theorems may be replaced by “norm” conditions as in the various
examples in the survey article [14].

It is important to mention here that the degree theories of Chen (see the end of
Chen’s paper [3]) and Liu [19] concerning condensing, or 1-set-contractive, pertur-
bations of m-accretive operators contain a basic flaw. In fact, both authors claim
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that, for an m-accretive operator T, the operator Qλ ≡ (T +λI)−1 is non-expansive
for small λ > 0. However, this is not true in general because

(T + λI)−1x = ((1/λ)T + I)−1 ((1/λ)x) ,

which says that the operator Qλ is a Lipschitzian mapping with Lipschitz constant
1/λ > 1, for all small λ > 0. It seems that these two degree theories are therefore
valid for operators of the type (T + I) + C with T m-accretive.

Example 1. It is easy to see that we can improve upon the example of [11]. As in
[11], we consider the problem

(BV )


−

N∑
i=1

∂

∂xi
ai

(
∂u

∂xi

)
+ g

(
x,

∂u

∂x1
, · · ·, ∂u

∂xN
, u

)
= p(x), on Ω,

u(x) = 0, on ∂Ω.

With the notation of [11], we let X = L2(Ω),

Tu ≡ −
N∑
i=1

∂

∂xi
ai

(
∂u

∂xi

)
, u ∈ D(T ) ≡W 2,2(Ω) ∩W 1,2

0 (Ω),

and (Cu)(x) ≡ g(x,∇u(x), u(x)), u ∈ D(T ), x ∈ Ω. We also let p ∈ L2(Ω). The
solvability of (BV ) in D(T ) may now be achieved if we assume exactly what was
assumed in [11], but with condition (g2) there replaced by∫

Ω

(g(x,∇u(x), u(x)) − p(x))u(x)dx ≥ 0,

for all u ∈ D(A)∩ ∂G, where G is a bounded open set in L2(Ω) containing zero. In
particular, we may take G = Br(0). �

Maximal monotone versions of some of the results in this paper can be found in
the author’s paper [17].
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