Uniqueness for non-harmonic trigonometric series
HTML articles powered by AMS MathViewer
- by Kaora Yoneda
- Proc. Amer. Math. Soc. 124 (1996), 1795-1800
- DOI: https://doi.org/10.1090/S0002-9939-96-03427-2
- PDF | Request permission
Abstract:
When $\lambda _{n} > 0$, $\lambda _{n} \uparrow \infty$ and \begin{equation*} \frac {1}{2}\left |a_{0}\right | +\sum _{n=1}^{\infty }\frac {\left |a_{n}\right |+\left |b _{n}\right |}{\lambda _{n}^{2}} < \infty , \end{equation*} if \begin{equation*} \frac {1}{2}a_{0}+\sum _{n=1}^{\infty }(a_{n}\cos \lambda _{n}x+b_{n}\sin \lambda _{n}x) = 0 \text {\quad everywhere $(-\infty , \infty )$}, \end{equation*} then \begin{equation*} a_{0}=a_{1}=b_{1}=\dots =a_{n}=b_{n}=\dots =0. \end{equation*} More generalized results are given.References
- N. K. Bary, A treatise on trigonometric series. Vols. I, II, A Pergamon Press Book, The Macmillan Company, New York, 1964. Authorized translation by Margaret F. Mullins. MR 0171116
- A. Zygmund, Über die Beziehungen der trigonometrisch en Reihen und Integrale, Mat. Anal. 99 (1928), 562–589.
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- Kaora Yoneda
- Affiliation: Department of Mathematics and Information Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 593, Japan
- Email: yoneda@mathsun.cias.osakafu-u.ac.jp
- Received by editor(s): March 30, 1994
- Received by editor(s) in revised form: November 29, 1994
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1795-1800
- MSC (1991): Primary 42A63
- DOI: https://doi.org/10.1090/S0002-9939-96-03427-2
- MathSciNet review: 1328382