Banach spaces in which every

-weakly summable sequence

lies in the range of a vector measure

Author:
C. Piñeiro

Journal:
Proc. Amer. Math. Soc. **124** (1996), 2013-2020

MSC (1991):
Primary 46G10; Secondary 47B10

DOI:
https://doi.org/10.1090/S0002-9939-96-03242-X

MathSciNet review:
1307557

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Banach space. For we prove that the identity map is -summing if and only if the operator is nuclear for every unconditionally summable sequence in , where is the conjugate number for . Using this result we find a characterization of Banach spaces in which every -weakly summable sequence lies inside the range of an -valued measure (equivalently, every -weakly summable sequence in , satisfying that the operator is compact, lies in the range of an -valued measure) with bounded variation. They are those Banach spaces such that the identity operator is -summing.

**[AD]**R. Anantharaman and J. Diestel,*Sequences in the range of a vector measure*, Anna. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat.**30**(1991), 221--235. MR**92g:46049****[DU]**J. Diestel and J. J. Uhl,*Vector measures*, Math. Surveys Monographs, vol. 15, Amer. Math. Soc., Providence, RI, 1977. MR**56:12216****[LP]**J. Lindenstrauss and Pelczynski,*Absolutely summing operators in -spaces and their applications*, Studia Math.**29**(1968), 275--326. MR**37:6743****[P]**A. Pietsch,*Operator ideals*, North-Holland, Amsterdam, 1980. MR**81j:47001****[Pi 1]**C. Piñeiro,*Operators on Banach spaces taking compact sets inside ranges of vector measures*, Proc. Amer. Math. Soc.**116**(1992), 1031--1040. MR**93b:47076****[Pi 2]**------,*Sequences in the range of a vector measure with bounded variations*, Proc. Amer. Math. Soc.**123**(1995), 3329--3334. CMP**95:16****[PR]**C. Piñeiro and L. Rodriguez-Piazza,*Banach spaces in which every compact lies inside the range of a vector measure*, Proc. Amer. Math. Soc.**114**(1992), 505--517. MR**92e:46038****[Ps]**G. Pisier,*Factorization of linear operators and geometry of Banach spaces*, CBMS Regional Conf. Ser. in Math., vol. 60, Amer. Math. Soc., Providence, RI, 1986. MR**88a:47020****[T]**N. Tomczak-Jaegermann,*Banach-Mazur distances and finite-dimensional operator ideals*, Pitman Monographs Surveys Pure Appl. Math., vol. 38, Longman Sci. Tech., Harlow, 1989. MR**90k:46039**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
46G10,
47B10

Retrieve articles in all journals with MSC (1991): 46G10, 47B10

Additional Information

**C. Piñeiro**

Affiliation:
Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, Aptdo. 1160, Sevilla, 41080, Spain

Address at time of publication:
Departamento de Matemáticas, Escuela Politécnica Superior, Universidad de Huelva, 21810 La Rábida, Huelva, Spain

DOI:
https://doi.org/10.1090/S0002-9939-96-03242-X

Received by editor(s):
September 12, 1994

Received by editor(s) in revised form:
December 2, 1994

Additional Notes:
This research has been partially supported by the D.G.I.C.Y.T., PB 90-893

Communicated by:
Palle E. T. Jorgensen

Article copyright:
© Copyright 1996
American Mathematical Society