Differences of vector-valued functions on topological groups
HTML articles powered by AMS MathViewer
- by Bolis Basit and A. J. Pryde
- Proc. Amer. Math. Soc. 124 (1996), 1969-1975
- DOI: https://doi.org/10.1090/S0002-9939-96-03258-3
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group equipped with right Haar measure. The right differences $\triangle _{h} \varphi$ of functions $\varphi$ on $G$ are defined by $\triangle _{h}\varphi (t) = \varphi (th) - \varphi (t)$ for $h,t \in G$. Let $\varphi \in L^{\infty }(G)$ and suppose $\triangle _{h} \varphi \in L^{p} (G)$ for some $1 \leq p < \infty$ and all $h \in G$. We prove that $\Vert \triangle _{h} \varphi \Vert _{p}$ is a right uniformly continuous function of $h$. If $G$ is abelian and the Beurling spectrum $sp(\varphi )$ does not contain the unit of the dual group $\hat {G}$, then we show $\varphi \in L^{p} (G)$. These results have analogues for functions $\varphi : G\to X$, where $X$ is a separable or reflexive Banach space. Finally, we apply our methods to vector-valued right uniformly continuous differences and to absolutely continuous elements of left Banach $G$-modules.References
- Bolis Basit and Magdy Emam, Differences of functions in locally convex spaces and applications to almost periodic and almost automorphic functions, Ann. Polon. Math. 41 (1983), no. 3, 193–201. MR 730302, DOI 10.4064/ap-41-3-193-201
- B. Basit and A.J. Pryde, Polynomials and functions with finite spectra on locally compact abelian groups, Bull. Austral. Math. Soc. 51 (1994), 33–42.
- Jens Peter Reus Christensen, Joint continuity of separately continuous functions, Proc. Amer. Math. Soc. 82 (1981), no. 3, 455–461. MR 612739, DOI 10.1090/S0002-9939-1981-0612739-1
- C. Datry and G. Muraz, Analyse harmonique dans les modules de Banach I: propriétés générales, Bull. Science Mathematique 119 (1995), 299–337.
- R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
- Fred Galvin, Gilbert Muraz, and Pawel Szeptycki, Fonctions aux différences $f(x)-f(a+x)$ continues, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), no. 4, 397–400 (French, with English and French summaries). MR 1179045
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- S. Kwapień, On Banach spaces containing $c_{0}$, Studia Math. 52 (1974), 187–188. MR 356156
- I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515–531. MR 370466, DOI 10.2140/pjm.1974.51.515
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
- Kôsaku Yosida, Functional analysis, 4th ed., Die Grundlehren der mathematischen Wissenschaften, Band 123, Springer-Verlag, New York-Heidelberg, 1974. MR 0350358, DOI 10.1007/978-3-642-96208-0
Bibliographic Information
- Bolis Basit
- Affiliation: Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
- Email: bbasit(ajpryde)@vaxc.cc.monash.edu.au
- A. J. Pryde
- Affiliation: Department of Mathematics, Monash University, Clayton, Victoria 3168, Australia
- Email: bbasit(ajpryde)@vaxc.cc.monash.edu.au
- Received by editor(s): September 21, 1994
- Received by editor(s) in revised form: January 4, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1969-1975
- MSC (1991): Primary 43A15; Secondary 28B05, 39A05
- DOI: https://doi.org/10.1090/S0002-9939-96-03258-3
- MathSciNet review: 1317031