The Lu Qi-Keng conjecture fails generically
Author:
Harold P. Boas
Journal:
Proc. Amer. Math. Soc. 124 (1996), 2021-2027
MSC (1991):
Primary 32H10
DOI:
https://doi.org/10.1090/S0002-9939-96-03259-5
MathSciNet review:
1317032
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The bounded domains of holomorphy in whose Bergman kernel functions are zero-free form a nowhere dense subset (with respect to a variant of the Hausdorff distance) of all bounded domains of holomorphy.
- 1. Harold P. Boas, Counterexample to the Lu Qi-Keng conjecture, Proc. Amer. Math. Soc. 97 (1986), no. 2, 374–375. MR 835902, https://doi.org/10.1090/S0002-9939-1986-0835902-8
- 2. Harold P. Boas and Emil J. Straube, Equivalence of regularity for the Bergman projection and the \overline∂-Neumann operator, Manuscripta Math. 67 (1990), no. 1, 25–33. MR 1037994, https://doi.org/10.1007/BF02568420
- 3. Yakov Eliashberg, Topological characterization of Stein manifolds of dimension >2, Internat. J. Math. 1 (1990), no. 1, 29–46. MR 1044658, https://doi.org/10.1142/S0129167X90000034
- 4. John E. Fornæss and Bill Zame, Runge exhaustions of domains in 𝐶ⁿ, Math. Z. 194 (1987), no. 1, 1–5. MR 871214, https://doi.org/10.1007/BF01168001
- 5. John Erik Fornaess and Edgar Lee Stout, Spreading polydiscs on complex manifolds, Amer. J. Math. 99 (1977), no. 5, 933–960. MR 470251, https://doi.org/10.2307/2373992
- 6. R. E. Greene and Steven G. Krantz, Stability properties of the Bergman kernel and curvature properties of bounded domains, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) Ann. of Math. Stud., vol. 100, Princeton Univ. Press, Princeton, N.J., 1981, pp. 179–198. MR 627758
- 7. Lars Hörmander, 𝐿² estimates and existence theorems for the ∂ operator, Acta Math. 113 (1965), 89–152. MR 179443, https://doi.org/10.1007/BF02391775
- 8. Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120
- 9. J. J. Kohn, Global regularity for ∂ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292. MR 344703, https://doi.org/10.1090/S0002-9947-1973-0344703-4
- 10. Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310
- 11. Q.-k. Lu, On Kaehler manifolds with constant curvature, Chinese Math.–Acta 8 (1966), 283–298. MR 0206990
- 12. I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20 (1967), 759–762 (French). MR 226042
- 13. I. P. Ramadanov, Some applications of the Bergman kernel to geometrical theory of functions, Complex analysis (Warsaw, 1979) Banach Center Publ., vol. 11, PWN, Warsaw, 1983, pp. 275–286. MR 737768
- 14. N. V. Shcherbina, Decomposition of a common boundary of two domains of holomorphy into analytic curves, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1106–1123, 1136 (Russian). MR 675533
- 15. Maciej Skwarczyński, Biholomorphic invariants related to the Bergman function, Dissertationes Math. (Rozprawy Mat.) 173 (1980), 59. MR 575756
- 16. Nobuyuki Suita and Akira Yamada, On the Lu Qi-keng conjecture, Proc. Amer. Math. Soc. 59 (1976), no. 2, 222–224. MR 425185, https://doi.org/10.1090/S0002-9939-1976-0425185-9
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 32H10
Retrieve articles in all journals with MSC (1991): 32H10
Additional Information
Harold P. Boas
Affiliation:
Department of Mathematics Texas A&M University College Station Texas 77843–3368
Email:
boas@math.tamu.edu
DOI:
https://doi.org/10.1090/S0002-9939-96-03259-5
Received by editor(s):
December 10, 1994
Additional Notes:
This research was partially supported by NSF grant number DMS-9203514.
Communicated by:
Eric Bedford
Article copyright:
© Copyright 1996
American Mathematical Society