The Euler characteristic is stable under compact perturbations
HTML articles powered by AMS MathViewer
- by Calin-Grigore Ambrozie
- Proc. Amer. Math. Soc. 124 (1996), 2041-2050
- DOI: https://doi.org/10.1090/S0002-9939-96-03283-2
- PDF | Request permission
Abstract:
We prove in the general case the stability under compact perturbations of the index (i.e. the Euler characteristic) of a Fredholm complex of Banach spaces. In particular, we obtain the corresponding stability property for Fredholm multioperators. These results are the consequence of a similar statement, concerning more general objects called Fredholm pairs.References
- Ernst Albrecht and Florian-Horia Vasilescu, Semi-Fredholm complexes, Dilation theory, Toeplitz operators, and other topics (Timişoara/Herculane, 1982) Oper. Theory Adv. Appl., vol. 11, Birkhäuser, Basel, 1983, pp. 15–39. MR 789629
- Ernst Albrecht and Florian-Horia Vasilescu, Stability of the index of a semi-Fredholm complex of Banach spaces, J. Funct. Anal. 66 (1986), no. 2, 141–172. MR 832988, DOI 10.1016/0022-1236(86)90070-4
- C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), no. 1, 61–77. MR 1191254
- C.-G. Ambrozie, On Fredholm index in Banach spaces, preprint IMAR 6/’91.
- C.-G. Ambrozie, The solution of a problem on Fredholm complexes, preprint IMAR 30/’94.
- R. E. Curto, Fredholm and invertible tuples of bounded linear operators, Dissertation, State Univ. of New York at Stony Brook, 1978.
- Raul E. Curto, Fredholm and invertible $n$-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), no. 1, 129–159. MR 613789, DOI 10.1090/S0002-9947-1981-0613789-6
- J. Eschmeier, Analytic spectral mapping theorems for joint spectra, Operator Theory: Advances and Applications 24 (1987), 167-181.
- A. S. Faĭnšteĭn, Stability of Fredholm complexes of Banach spaces with respect to perturbations which are small in $q$-norm, Izv. Akad. Nauk Azerbaĭdzhan. SSR Ser. Fiz.-Tekhn. Mat. Nauk 1 (1980), no. 1, 3–8 (Russian, with English and Azerbaijani summaries). MR 596125
- A. S. Faĭnshteĭn and V. S. Shul′man, Stability, under perturbations that are small with respect to the measure of noncompactness, of the index of a short Fredholm complex of Banach spaces, Spectral theory of operators, No. 4, “Èlm”, Baku, 1982, pp. 189–198 (Russian). MR 800296
- Constantin Niculescu and Nicolae Popa, Elemente de teoria spaţiilor Banach, Editura Academiei Republicii Socialiste România, Bucharest, 1981 (Romanian). With an English summary. MR 616450
- Mihai Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), no. 1, 65–90. MR 670178
- Mihai Putinar, Base change and the Fredholm index, Integral Equations Operator Theory 8 (1985), no. 5, 674–692. MR 813356, DOI 10.1007/BF01201709
- Joseph L. Taylor, A joint spectrum for several commuting operators, J. Functional Analysis 6 (1970), 172–191. MR 0268706, DOI 10.1016/0022-1236(70)90055-8
- F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), no. 2, 247–275. MR 559608
- F.-H. Vasilescu, The stability of the Euler characteristic for Hilbert complexes, Math. Ann. 248 (1980), no. 2, 109–116. MR 573342, DOI 10.1007/BF01421951
Bibliographic Information
- Calin-Grigore Ambrozie
- Affiliation: Institute of Mathematics, Romanian Academy, P.O.Box 1-764 RO-70700 Bucharest, Romania
- Email: cambroz@imar.ro
- Received by editor(s): December 21, 1994
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2041-2050
- MSC (1991): Primary 47A53; Secondary 47A55
- DOI: https://doi.org/10.1090/S0002-9939-96-03283-2
- MathSciNet review: 1322909