Compact operators and the geometric structure of $C^*$-algebras
HTML articles powered by AMS MathViewer
- by M. Anoussis and E. G. Katsoulis
- Proc. Amer. Math. Soc. 124 (1996), 2115-2122
- DOI: https://doi.org/10.1090/S0002-9939-96-03285-6
- PDF | Request permission
Abstract:
Given a $C^\ast$-algebra $\mathcal {A}$ and an element $A\in \mathcal {A}$, we give necessary and sufficient geometric conditions equivalent to the existence of a representation $(\phi ,\mathcal {H})$ of $\mathcal {A}$ so that $\phi (A)$ is a compact or a finite-rank operator. The implications of these criteria on the geometric structure of $C^\ast$-algebras are also discussed.References
- Kenneth R. Davidson, Nest algebras, Pitman Research Notes in Mathematics Series, vol. 191, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. Triangular forms for operator algebras on Hilbert space. MR 972978
- R. G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc. 17 (1966), 413–415. MR 203464, DOI 10.1090/S0002-9939-1966-0203464-1
- J. A. Erdos, On certain elements of $C^{\ast }$-algebras, Illinois J. Math. 15 (1971), 682–693. MR 290120, DOI 10.1215/ijm/1256052521
- P. Harmand, D. Werner, and W. Werner, $M$-ideals in Banach spaces and Banach algebras, Lecture Notes in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993. MR 1238713, DOI 10.1007/BFb0084355
- Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras. Vol. II, Pure and Applied Mathematics, vol. 100, Academic Press, Inc., Orlando, FL, 1986. Advanced theory. MR 859186, DOI 10.1016/S0079-8169(08)60611-X
- R. L. Moore and T. T. Trent, Extreme points of certain operator algebras, Indiana Univ. Math. J. 36 (1987), no. 3, 645–650. MR 905616, DOI 10.1512/iumj.1987.36.36036
- James Rovnyak, Operator-valued analytic functions of constant norm, Czechoslovak Math. J. 39(114) (1989), no. 1, 165–168. MR 983493, DOI 10.21136/CMJ.1989.102288
Bibliographic Information
- M. Anoussis
- Affiliation: Department of Mathematics, University of the Aegean, Karlovasi 83200, Greece
- E. G. Katsoulis
- Affiliation: Department of Mathematics, East Carolina University, Greenville, North Carolina 27858
- MR Author ID: 99165
- Received by editor(s): September 12, 1994
- Received by editor(s) in revised form: January 30, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2115-2122
- MSC (1991): Primary 47C15, 46B20; Secondary 47D25
- DOI: https://doi.org/10.1090/S0002-9939-96-03285-6
- MathSciNet review: 1322911