On the size of lemniscates of polynomials in one and several variables
HTML articles powered by AMS MathViewer
- by A. Cuyt, K. Driver and D. S. Lubinsky
- Proc. Amer. Math. Soc. 124 (1996), 2123-2136
- DOI: https://doi.org/10.1090/S0002-9939-96-03293-5
- PDF | Request permission
Abstract:
In the convergence theory of rational interpolation and Padé approximation, it is essential to estimate the size of the lemniscatic set $E:=\big \{z : |z|\le r$ and $|P(z)|\le \epsilon ^{n}\big \}$, for a polynomial $P$ of degree $\le n$. Usually, $P$ is taken to be monic, and either Cartan’s Lemma or potential theory is used to estimate the size of $E$, in terms of Hausdorff contents, planar Lebesgue measure $m_{2}$, or logarithmic capacity cap. Here we normalize $\|P\|_{L_{\infty }\bigl (|z|\le r\bigr )}=1$ and show that cap$(E)\le 2r\epsilon$ and $m_{2} (E)\le \pi (2r\epsilon )^{2}$ are the sharp estimates for the size of $E$. Our main result, however, involves generalizations of this to polynomials in several variables, as measured by Lebesgue measure on $\mathbb {C}^{n}$ or product capacity and Favarov’s capacity. Several of our estimates are sharp with respect to order in $r$ and $\epsilon$.References
- George A. Baker Jr., Essentials of Padé approximants, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0454459
- George A. Baker Jr. and Peter Graves-Morris, Padé approximants. Part I, Encyclopedia of Mathematics and its Applications, vol. 13, Addison-Wesley Publishing Co., Reading, Mass., 1981. Basic theory; With a foreword by Peter A. Carruthers. MR 635619
- Eric Bedford and B. A. Taylor, The complex equilibrium measure of a symmetric convex set in $\textbf {R}^n$, Trans. Amer. Math. Soc. 294 (1986), no. 2, 705–717. MR 825731, DOI 10.1090/S0002-9947-1986-0825731-8
- P. Borwein and T. Erdelyi, Polynomials and Polynomial Inequalities, Book (to appear).
- Annie Cuyt, Multivariate Padé approximants revisited, BIT 26 (1986), no. 1, 71–79. MR 833832, DOI 10.1007/BF01939363
- Urban Cegrell, Capacities in complex analysis, Aspects of Mathematics, E14, Friedr. Vieweg & Sohn, Braunschweig, 1988. MR 964469, DOI 10.1007/978-3-663-14203-4
- G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, Vol. 26, American Mathematical Society, Providence, R.I., 1969. MR 0247039, DOI 10.1090/mmono/026
- A. A. Gončar, A local condition for the single-valuedness of analytic functions of several variables, Mat. Sb. (N.S.) 93(135) (1974), 296–313, 327 (Russian). MR 0589892
- W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
- Einar Hille, Analytic function theory. Vol. II, Introductions to Higher Mathematics, Ginn and Company, Boston, Mass.-New York-Toronto, 1962. MR 0201608
- J. Karlsson and H. Wallin, Rational approximation by an interpolation procedure in several variables, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 83–100. MR 0481778
- N. S. Landkof, Foundations of modern potential theory, Die Grundlehren der mathematischen Wissenschaften, Band 180, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy. MR 0350027, DOI 10.1007/978-3-642-65183-0
- J. Nuttall, The convergence of Padé approximants of meromorphic functions, J. Math. Anal. Appl. 31 (1970), 147–153. MR 288279, DOI 10.1016/0022-247X(70)90126-5
- Boris Paneah, On a lower bound for the absolute value of a polynomial of several complex variables, J. Approx. Theory 78 (1994), no. 3, 402–409. MR 1292969, DOI 10.1006/jath.1994.1086
- Ch. Pommerenke, Padé approximants and convergence in capacity, J. Math. Anal. Appl. 41 (1973), 775–780. MR 328090, DOI 10.1016/0022-247X(73)90248-5
- C. A. Rogers, Hausdorff measures, Cambridge University Press, London-New York, 1970. MR 0281862
- A. Sadullaev, Plurisubharmonic measures and capacities on complex manifolds, Uspekhi Mat. Nauk 36 (1981), no. 4(220), 53–105, 247 (Russian). MR 629683
- M. Schiffer and J. Siciak, Transfinite diameter and analytic continuation of functions of two complex variables, Studies in mathematical analysis and related topics, Stanford Univ. Press, Stanford, Calif., 1962, pp. 341–358. MR 0150341
- G. W. Stewart and Ji Guang Sun, Matrix perturbation theory, Computer Science and Scientific Computing, Academic Press, Inc., Boston, MA, 1990. MR 1061154
- V. P. Zaharjuta, Transfinite diameter, Čebyšev constants and capacity for a compactum in $C^{n}$, Mat. Sb. (N.S.) 96(138) (1975), 374–389, 503 (Russian). MR 0486623
Bibliographic Information
- A. Cuyt
- Affiliation: Department of Mathematics, UIA, University of Antwerp, Universiteitsplein 1, B2610 Wilrijk, Belgium
- MR Author ID: 53570
- Email: CUYT@WINS.UIA.AC.BE
- K. Driver
- Affiliation: Department of Mathematics, Witwatersrand University, P.O. Wits 2050, South Africa
- Email: 036KAD@COSMOS.WITS.AC.ZA
- D. S. Lubinsky
- Affiliation: Department of Mathematics, Witwatersrand University, P.O. Wits 2050, South Africa
- MR Author ID: 116460
- ORCID: 0000-0002-0473-4242
- Email: 036DSL@COSMOS.WITS.AC.ZA
- Received by editor(s): September 19, 1994
- Received by editor(s) in revised form: January 30, 1995
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2123-2136
- MSC (1991): Primary 30C10, 32A30, 41A10, 41A21
- DOI: https://doi.org/10.1090/S0002-9939-96-03293-5
- MathSciNet review: 1322919