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LADDER OPERATORS FOR SZEGŐ POLYNOMIALS

AND RELATED BIORTHOGONAL RATIONAL FUNCTIONS

MOURAD E. H. ISMAIL AND MIZAN RAHMAN

(Communicated by Palle E. T. Jorgensen)

Abstract. We find the raising and lowering operators for orthogonal poly-
nomials on the unit circle introduced by Szegő and for their four parameter
generalization to 4φ3 biorthogonal rational functions on the unit circle.

1. Introduction

The Szegő theory for orthogonal polynomials on the unit circle [10] was developed
in the early part of this century. One aspect of this theory is to relate the limiting
behavior of the orthonormal polynomials to the absolutely continuous part of the
measure with respect to which the polynomials are orthonormal. As an illustration
of his theory Szegő [15] proved that the polynomials {Hn(z|q)},

Hn(z|q) :=
n∑
k=0

(q; q)n
(q; q)k(q; q)n−k

(q−1/2z)k,(1.1)

satisfy the orthogonality relation

1

2πi

∫
|z|=1

Hm(z|q)Hn(z|q)wc(z|q)
dz

z
= q−n

(q; q)n
(q; q)∞

δm,n,(1.2)

where the weight function wc(z|q) is given by

wc(z|q) := (q1/2z, q1/2/z; q)∞.(1.3)

Throughout this paper we shall always assume that 0 < q < 1 and shall adopt the
following notation for the q-shifted factorials [9]

(a; q)0 := 1, (a; q)n :=
n∏
k=1

(1− aqk−1), n = 1, 2, . . . , or∞,(1.4)

and for the multiple q-shifted factorials

(a1, a2, . . . , ak; q)n :=
k∏
j=1

(aj ; q)n.(1.5)
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2150 M. E. H. ISMAIL AND MIZAN RAHMAN

We shall also need the notion of basic hypergeometric series

rφs

(
a1, . . . , ar
b1, . . . , bs

∣∣∣∣ q, z) = rφs(a1, . . . , ar; b1, . . . , bs; q, z)

=
∞∑
n=0

(a1, . . . , ar; q)n
(q, b1, . . . , bs; q)n

zn(−qn(n−1)/2)s+1−r.

(1.6)

The subscript c in wc(z|q) refers to the unit circle.
There is a hierarchy of the so-called classical q-orthogonal polynomials with the

Askey-Wilson polynomials ([4], [6], [9]) being the most general and the continuous
q-Hermite polynomials ([5], [9]) at the bottom of the chart. The polynomials at a
certain level are special or limiting cases of some of the polynomials at a higher level.
In [7] Berg and Ismail showed how one can use generating functions to go from the
continuous q-Hermite polynomials to the Askey-Wilson polynomials through the
intermediate stage of the Al-Salam-Chihara polynomials [1]. We believe that the
Szegő polynomials {Hn(z|q)} are the unit circle version of the continuous q-Hermite
polynomials. The unit circle analogues of the Askey-Wilson polynomials are the
four-parameter biorthogonal rational functions introduced by Al-Salam and Ismail
in [2]. They are the pair {rn}, {sn},

rn(z; a, α, b, β|q) := 4φ3

(
q−n, abαβqn−1, bq1/2, bz

bα, bβ, abq1/2z

∣∣∣∣ q, q)(1.7)

and

sn(z; , a, α, b, β|q) = rn(z;α, a, β, b|q).(1.8)

Al-Salam and Ismail [2] established the biorthogonality relation

1

2πi

∫
|z|=1

wc(z; a, α, b, β|q)rn(z; a, α, b, β|q)sm(z; a, α, b, β|q) dz
z

= κ(a, α, b, β)
(q, aα, abαβqn−1; q)n
(bβ; q)n(abαβ; q)2n

(bβ)nδm,n,

(1.9)

where the weight function wc(z; a, α, b, β|q) is

wc(z; a, α, b, β|q) :=
(q1/2z, q1/2/z, abq1/2z, αβq1/2/z; q)∞

(az, α/z, bz, β/z; q)∞
(1.10)

and the total mass κ(a, α, b, β) is

κ(a, α, b, β) =
1

2πi

∫
|z|=1

wc(z; a, α, b, β|q)dz
z

=
(aq1/2, αq1/2, bq1/2, βq1/2, abαβ; q)∞

(q, aα, bα, aβ, bβ; q)∞
.

(1.11)

When a = α = 0 the functions rn become polynomials previously studied by Pastro
[12]. Observe that (1.11) is a special case of (4.11.3) in [9].

The q-difference operator Dq,z is

(Dq,zf)(z) :=
f(z)− f(qz)

(1− q)z .(1.12)

The purpose of this work is first to compute the adjoint of Dq,z on a suitable inner
product space, then to show that Dq,z and its adjoint are, respectively, the lowering
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and raising operators of the Szegő polynomials {Hn(z|q)}, and finally to generalize
these results to the biorthogonal rational functions {rn} and {sn}. In Section 2
we shall treat the polynomials {Hn(z|q)} and we also find the q-Sturm-Liouville
system whose eigenfunctions are the Szegő polynomials. This latter fact is then
used to give an elementary proof of the orthogonality of the Hn’s with respect to
wc(z|q). Section 3 develops the q-Sturm-Liouville problem associated with Dq,z on
the unit circle. In Section 4 we identify the raising and lowering operators for the
more general and more complicated case of the biorthogonal pair {rn, sn}. Section
5 contains a new derivation of the biorthogonality relation (1.9) through the use of
raising and lowering operators found in Section 4.

This work is part of the renewed interest in biorthogonal rational functions and
polynomials ([3], [11], [13], [14]).

2. Ladder operators

The operator Dq,z of (1.12) acts nicely on the Hn’s. It is straightforward to
derive

Dq,zHn(z|q) =
q−1/2(1− qn)

1− q Hn−1(z|q)(2.1)

from the representation (1.1). This shows that Dq,z acts as a lowering operator on
the Hn’s. In order to find a raising operator we need to compute the adjoint of
Dq,z with respect to a suitable inner product. Before we introduce the appropriate
inner product space we need to introduce some notation. If f is analytic in ρ1 <
|z| < ρ2, then f will denote the function whose Laurent coefficients are the complex
conjugates of the corresponding Laurent coefficients of f . Thus f is also analytic
in ρ1 < |z| < ρ2. Consider the set of functions

Fν := {f : f(z) is analytic for qν ≤ |z| ≤ q−ν}.(2.2)

This set will be equipped with the inner product

〈f, g〉c :=
1

2πi

∫
|z|=1

f(z)g(z)
dz

z
.(2.3)

We shall now use Fν to denote this inner product space. It is clear that if f ∈ Fν ,
then f ∈ Fν . Note that f(z) = f(z).

Theorem 2.1. The adjoint of the q-difference operator Dq,z is Tq,z,

(Tq,zf)(z) =
z[f(z)− qf(qz)]

1− q ,(2.4)

that is

〈Dq,zf, g〉c = 〈f, Tq,zg〉c, for f, g ∈ F1.(2.5)

Proof. We have

〈Dq,zf, g〉c =
1

2πi

∫
|z|=1

f(z)− f(qz)

(1− q)z g(z)
dz

z

=
1

2πi

∫
|z|=1

f(z)

(1− q)z g(z
−1)

dz

z
− 1

2πi

∫
|z|=q−1

f(qz)

(1− q)z g(z
−1)

dz

z
,
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2152 M. E. H. ISMAIL AND MIZAN RAHMAN

since f and g are analytic in 1 ≤ |z| ≤ q−1. We replace z by q−1z in the last
integral. This gives

〈Dq,zf, g〉c =
1

2πi

∫
|z|=1

f(z)
g(z−1)− qg(qz−1)

(1− q)z
dz

z

=
1

2πi

∫
|z|=1

f(z)
z[g(z)− qg(qz)]

(1− q)
dz

z
,

(2.6)

and the proof is complete.

Observe that Tq,z can be written in the form

(Tq,zf)(z) = qz2(Dq,zf)(z) + zf(z).(2.7)

We now show that Tq,z is a raising operator for the polynomials Hn(z|q). Since
wc(z|q) is real on the unit circle, we can rewrite the orthogonality relation (1.2) in
the form

q−n
(q; q)n
(q; q)∞

δm,n = 〈Hm(z|q), wc(z|q)Hn(z|q)〉c

=
q1/2(1− q)
1− qm+1

〈Dq,zHm+1(z|q), wc(z|q)Hn(z|q)〉c

=
q1/2(1− q)
1− qm+1

〈Hm+1(z|q), Tq,zwc(z|q)Hn(z|q)〉c.

This shows that
1

wc(z|q)
Tq,zwc(z|q)Hn(z|q)

is orthogonal toHn+1(z|q) for allm 6= n with respect to the weight function wc(z|q).
Hence one would expect

1

wc(z|q)
Tq,zwc(z|q)Hn(z|q)

to be a constant multiple of Hn+1(z|q). Thus we have have been led to the following
result.

Theorem 2.2. The raising operator for {Hn} is Tq,z in the sense

1

wc(z|q)
Tq,z (wc(z|q)Hn(z|q)) =

√
q

1− q Hn+1(z|q).(2.8)

This theorem follows by direct evaluation of the left-hand side of (2.8). The
details are straightforward and are omitted.

Theorem 2.3. The Szegő polynomials have the Rodrigues formula

Hn(z|q) = (q−1/2 − q1/2)n
1

wc(z|q)
Tnq,z (wc(z|q)) .(2.9)

Proof. Apply (2.8) repeatedly.
When we combine (2.4) and (2.8) we arrive at the following theorem.

Theorem 2.4. The polynomials {Hn(z|q)} satisfy the q-Sturm-Liouville equation

1

wc(z|q)
Tq,z (wc(z|q)Dq,zHn(z|q)) = λnHn(z|q),(2.10)
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where

λn =
(1− qn)

(1− q)2
.(2.11)

Observe that the eigenvalues of (2.11) are distinct. Note that the left-hand side
of (2.10) is in factored form and as such is an instance of an Infeld-Hull factorization
of a second-order q-difference operator.

Theorem 2.5. The orthogonality relation (1.2) follows from (2.1) and (2.8).

Proof. Set

ζn = 〈wc(z|q)Hn(z|q),Hn(z|q)〉c.(2.12)

Clearly we have

q−1/2(1− qn+1)

1− q ζn = 〈Dq,zHn+1(z|q), wc(z|q)Hn(z|q)〉c

= 〈Hn+1(z|q), Tq,zwc(z|q)Hn(z|q)〉c

=
q1/2

1− q ζn+1.

Therefore ζn+1 = q−1(1− qn+1)ζn and we get

ζn = q−n(q; q)nζ0.(2.13)

To find ζ0 expand wc(z|q) using the Jacobi triple product identity [9, (II.28)]
∞∑
−∞

qn
2

zn = (q2,−qz,−q/z; q2)∞,(2.14)

then substitute the expansion in

1

2πi

∫
|z|=1

wc(z|q)
dz

z
.

It is then straightforward to see that ζ0 = 1/(q; q)∞. Now substitute for ζ0 in (2.13)
to obtain (1.2), and this completes the proof.

3. q-Sturm Liouville operators

Motivated by equation (2.9) we now consider the more general operator

(Mf)(z) :=
1

ω(z)
(Tq,z (p(z)Dq,zf)) (z),(3.1)

where ω(z) is real on the unit circle with some restrictions on p and ω to follow.
The analysis in this section follows closely the plan in [8], where the spectral theory
of the Askey-Wilson polynomials is discussed.

Let Hω denote the inner product space L2 of the unit circle equipped with the
inner product

(f, g)ω :=
1

2πi

∫
|z|=1

f(z)g(z)ω(z)
dz

z
,(3.2)

and let

T := M|F2
in Hw.
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2154 M. E. H. ISMAIL AND MIZAN RAHMAN

We shall assume that p and ω satisfy

(i) p(z) > 0 a.e. on |z| = 1, p ∈ F1, 1/p ∈ L({z : |z| = 1});
(ii) on the unit circle ω(z) > 0 a.e. and both ω and 1/ω are integrable.

(3.3)

The expression Mf is therefore defined for f ∈ F2, and the operator T acts in Hw.
Furthermore, the domain F2 of T is dense in Hω since it contains all polynomials
and Laurent polynomials.

Theorem 3.1. The operator T is symmetric in Hω and T ≥ 0.

Proof. For all f, g ∈ F2, it follows that (Tf, g)w = (f, T g)w, hence the symmetry
of T . If f ∈ F2, then

(f, T f)ω = 〈f, Tq,z (p(z)Dq,zf)〉c = 〈Dq,zf, p(z)Dq,zf〉

=
1

2πi

∫
|z|=1

p(z)|Dq,zf(z)|2dz
z
,

(3.4)

which proves that T ≥ 0 and completes the proof of our theorem.

Corollary 3.2. Let y1, y2 ∈ F2 be solutions to

1

ω(z)
(Tq,z (p(z)Dq,zf)) (z) = λf,(3.5)

with λ = λ1 and λ = λ2, respectively, and assume λ1 6= λ2. Then y1 and y2 are
orthogonal in the sense

1

2πi

∫
|z|=1

y1(z)y2(z)
dz

z
= 0.(3.6)

Furthermore, the eigenvalues of (3.5) are all real.

Note that Theorem 3.1 implies that the eigenvalues of T are nonnegative.
Let Q(T ) denote the form domain of T and let T̃ be its Friedrichs extension.

Recall that the domain of T , Q(T ), is the completion of F1 with respect to ‖.‖Q,
where

‖f‖2Q :=
1

2πi

∫
|z|=1

p(z)|Dq,zf |2
dz

z
+ ‖f‖2ω,(3.7)

and if (., .)Q denotes the inner product on Q(T ), then for all f ∈ D(T̃ ) and g ∈
Q(T ),

(f, g)Q = (T̃ f, g)ω.(3.8)

We have that f ∈ Q(T ) if and only if there exists a sequence {fn} ⊂ F1 such
that ‖f − fn‖Q → 0; hence ‖f − fn‖w → 0 and {Dqfn} is a Cauchy sequence in

L2({z : |z| = 1}; p(z) dz
2πiz ), with limit F say. From (3.3) and (2.3) it follows that

for φ ∈ F1,

1

2πi

∫
|z|=1

F (z)φ(z)
dz

z
= lim
n→∞

1

2πi

∫
|z|=1

(Dq,zfn)(z)φ(z)
dz

z

= lim
n→∞

1

2πi

∫
|z|=1

fn(z)Dq,zφ(z)
dz

z

=
1

2πi

∫
|z|=1

f(z)Dq,zφ(z)
dz

z
.
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Thus in analogy with distributional derivatives, we shall say that F = Dq,zf in the
generalized sense. We conclude that the norm on Q(T ) is defined by (3.7) with
Dq,zf now defined in the generalized sense. Also, it follows in a standard way that

D(T ∗) = {f : f,Mf ∈ Hω}, T f = Mf,(3.9)

D(T̃ ) = Q(T ) ∩ D(T ∗)

= {f : p1/2Dq,zf ∈ L2({z : |z| = 1}), Mf ∈ Hω}.
(3.10)

4. Biorthogonal functions

We first evaluate the action of Dq,z on rn(z; a, α, b, β|q). A calculation gives

Dq,z
(bz; q)k

(abq1/2z; q)k
= −b(1− aq

1/2)(1− qk)

1− q
(qbz; q)k−1

(abq1/2z; q)k+1
.

Therefore

(abq1/2z; q)2Dq,zrn(z; a, α, b, β|q) =
bq1−n(1− aq1/2)(1− bq1/2)(1− qn)

(1− q)(1− bα)(1− bβ)

× (1− abαβqn−1)rn−1(z; qa, α, bq, β|q).

(4.1)

This shows that the operator (abq1/2z; q)2Dq,z is a lowering operator for the rn’s.
To guess at the raising operator we use (2.5). Clearly

〈(abq1/2z; q)2Dq,zf, wc(1/z; qa, α, qb, β|q) g〉c
= 〈Dq,zf, (abq

1/2/z; q)2wc(1/z; qa, α, qb, β|q) g〉c

= 〈f, Tq,z
(

(abq1/2/z; q)2wc(1/z; qa, α, qb, β|q)) g
)
〉c.

This relationship, (4.1) and the orthogonality relation (1.9) show that when m 6= n
then

0 = 〈rm−1(z; qa, α, qb, β|q)wc(z; qa, α, qb, β|q), sn−1(z; qa, α, qb, β|q)〉c
= 〈rn(z; a, α, b, β|q),

Tq,z
(

(abq1/2/z; q)2wc(1/z; qa, α, qb, β|q)sn−1(z; qa, α, qb, β|q)
)
〉c.

(4.2)

But (1.10) shows the symmetry of the weight function

wc(1/z; a, α, b, β|q) = wc(z; a, α, b, β|q).(4.3)

Now (4.2), (4.3), (1.8) and the biorthogonality relation (1.9) suggest that

Tq,z
(

(abq1/2/z; q)2wc(z; qa, α, qb, β|q)sn−1(z; qa, α, qb, β|q)
)

is a multiple of

wc(1/z; a, α, b, β|q)sn(z; qa, α, qb, β|q).(4.4)

This suggests that the raising operator we are looking for is defined by

(L+f)(z) =
1

wc(z; a, α, b, β|q)Tq,z
(

(αβq−3/2/z; q)2wc(z; a, α, b, β|q)f(z)
)
.

(4.5)
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Observe that L+ of (4.5) is a raising operator when it acts on rn because the
functions {rn, sn} are biorthogonal and not necessarily orthogonal. Like the case
of the Szegő polynomials it turns out that we have made the correct guess.

Theorem 4.1. The raising and lowering operators for {rn(z; a, α, b, β|q)} are L+

and L−, where

(L−f)(z) := ((αβq1/2z; q)2Dq,zf)(z),(4.6)

and L+ is as in (4.5). In other words

L−rn(z; a, α, b, β|q) =
bq1−n(1− q1/2a)(1− q1/2b)(1− abαβqn−1)

(1− q)(1− bα)(1− bβ)

× (1− qn)rn−1(z; qa, α, qb, β|q)

(4.7)

and

L+rn−1(z; a, α, b, β|q) =
(1− bα/q)(1− bβ/q)

(1− q)b rn(z; a, α/q, b, β/q|q).

(4.8)

Proof. We need only to prove (4.8). Set

Tq,z
(

(αβq1/2/z; q)2wc(z; a, qα, b, qβ|q)rn−1(z; a, qα, b, qβ|q)
)

=
z

1− qwc(z; a, α, b, β|q) Ln(z).
(4.9)

A calculation using (4.9), (1.7) and (1.10) gives

Ln(z) = (1− α/z)(1− β/z)4φ3

(
q1−n, abαβqn, q1/2b, bz
qbα, qbβ, abq1/2z

∣∣∣∣ q, q)
+

(zq1/2 − αβ)(1− az)(1− bz)

z2 (1− abq1/2z)
4φ3

(
q1−n, abαβqn, q1/2b, qbz

abq3/2z, qbα, qbβ

∣∣∣∣ q, q) .

(4.10)

Recall the Sears transformation [9, (III.15)]

4φ3

(
q−n, A,B,C
D,E, F

∣∣∣∣ q, q)
=

(E/A,F/A; q)n
(E,F ; q)n

An4φ3

(
q−n, A,D/B,D/C

D,Aq1−n/E,Aq1−n/F

∣∣∣∣ q, q) ,

(4.11)

where ABCq1−n = DEF . Now apply (4.11) with the invariant parameters A and
D being the terms depending on z. After some routine calculations we obtain

(qbα, qbβ; q)n−1

(q1−nz/α, q1−nz/β; q)n

(
z

αβbqn−1

)n−1
z2

αβ
Ln(z)

= qn−1
n−1∑
k=0

(q1−n, az, bz, q−n+1/2z/αβ; q)k
(q, q1−nz/α, q1−nz/β, abq1/2z; q)k

qk

− (αβ − q1/2z)

(αβ − q−n+1/2z)

n−1∑
k=0

(q1−n; q)k(az, bz, q−n+1/2z/αβ; q)k+1

(q; q)k(q1−nz/α, q1−nz/β, abq1/2z; q)k+1
qk.
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In the first sum in the above equation isolate the k = 0 term from the remaining
terms, but in the second sum isolate the k = n− 1 term from the rest of the series;
then combine the two remaining series. A fantastic cancellation occurs and we
obtain

Tq,z
[
(αβq1/2/z; q)2wc(z; a, qα, b, qβ|q)rn−1(z; a, qα, b, qβ|q)

]
=

(1− bα)(1− bβ/q)
(1− q)b wc(z; a, α, b, β|q)rn(z; a, α, b, β|q),

(4.12)

which is equivalent to (4.8) and the proof is complete.

5. The biorthogonality relation

Let us denote

Im,n(a, α, b, β)

:=
1

2πi

∫
|z|=1

wc(z; a, α, b, β|q)rn(z; a, α, b, β|q)sm(z; a, α, b, β|q)dz
z
,

(5.1)

which is just the integral on the left-hand side of (1.9). Observing that

〈Tq,zf(z), g(z)〉c = 〈f(z), Dq,zg(z)〉c
we use (4.12) to write

(1− αb)(1− βb)
b(1− q) Im,n(a, α, b, β)

=
1

2πi

∫
|z|=1

(αβq1/2/z; q)2wc(z; a, qα, b, qβ|q)rn−1(z; a, qα, b, qβ|q)

×Dq,zsm(z; a, α, b, β|q) dz
z

= βq1−m (1− αq1/2)(1− βq1/2)(1− qm)(1− abαβqm−1)

(1− q)(1− aβ)(1− bβ)

× 1

2πi

∫
|z|=1

wc(z; a, qα, b, qβ|q)rn−1(z; a, qα, b, qβ|q)sm−1(z; a, qα, b, qβ|q)dz
z
,

(5.2)

by (1.7), (1.8) and (4.1). Hence

Im,n(a, α, b, β) = −bβq (1− q1/2α)(1− q1/2β)(1− q−m)(1− aαbβqm−1)

(1− αb)(1− aβ)(1− bβ)2

× Im−1,n−1(a, qα, b, qβ).

(5.3)

Suppose m ≥ n. Then iterating (5.3) n− 1 times we obtain

Im,n(a, α, b, β) = (−bβ)nq(
n+1

2 ) (q1/2α, q1/2β, q−m, aαbβqm−1; q)n
(αb, aβ, bβ, bβ; q)n

× Im−n,0(a, qnα, b, qnβ).

(5.4)
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If m > n, then using the identity

Tq,z

[
(abq1/2z; q)2w(z;α, qa, β, qb|q)sk−1(z; qa, α, qb, β|q)

]
=

(1− aβ)(1− bβ)

abβ(1− q) w(z; a, α, b, β|q)sk(z; a, α, b, β|q)

(5.5)

gives

w(z; a, qnα, b, qnβ|q)sm−n(z; a, qnα, b, qnβ|q)

=
(abβqn(1− q)

(1− aβqn)(1− bβqn)

× Tq,z
[
(q1/2abz; q)2w(z; qnα, qa, qnβ, qb|q)sm−n(z; qa, qnα, qb, qnβ|q)

]
.

(5.6)

But the integral over the expression on the right-hand side of (5.6) over the unit
circle vanishes. This proves the orthogonality when m > n. If m = n, then we have

I0,0(a, qnα, b, qnβ) =
1

2πi

∫
|z|=1

w(z; a, qnα, b, qnβ|q dz
z

= κ(a, α, b, α)
(aα, bα, aβ, bβ; q)n

(q1/2α, q1/2β; q)n(abαβ; q)2n
,

(5.7)

by (1.11). On the other hand, if m < n, then iterating (5.3) m− 1 times we obtain

Im,n(a, α, b, β) = (−bβ)m
(q1/2α, q1/2β, q−m, abαβqm−1; q)m

(αb, aβ, bβ, bβ; q)m
q(
m+1

2 )

× I0,n−m(a, qmα, b, qmβ)

= (−bβ)m
(q1/2α, q1/2β, q−m, abαβqm−1; q)m

(αb, aβ, bβ, bβ; q)m
q(
m+1

2 )

× 1

2πi

∫
|z|=1

w(z; a, qmα, b, qmβ|q)rn−m(z; a, qmα, b, qmβ|q) dz
z
.

(5.8)

However, by (4.12),

w(z; a, qmα, b, qmβ|q)rn−m(z; a, qmα, b, qmβ|q)

=
b(1− q)

(1− qmαb)(1− qmbβ)

× Tq,z
[
(αβq2m+1/2/z; q)2w(z; a, qm+1α, b, qm+1β|q)

× rn−m−1(z; a, qm+1α, b, qm+1β|q)
]

(5.9)

and the integral of the right-hand side over the unit circle is zero. So, Im,n(a, α, b, β)
= 0 when m < n. This together with (5.6) and (5.7) constitute an alternate proof
of the biorthogonality relation (1.9), which is based on the use of the raising and
lowering operators L±.
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