A simple proof of the elliptical range theorem
HTML articles powered by AMS MathViewer
- by Chi-Kwong Li
- Proc. Amer. Math. Soc. 124 (1996), 1985-1986
- DOI: https://doi.org/10.1090/S0002-9939-96-03307-2
- PDF | Request permission
Abstract:
A short proof is given of the elliptical range theorem concerning the numerical range of a $2\times 2$ complex matrix.References
- T. Ando and C.K. Li (Editors), Special Issue: The Numerical Range and Numerical Radius, Linear and Multilinear Algebra 37, nos. 1 – 3, 1994.
- William F. Donoghue Jr., On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261–263. MR 96127
- Paul R. Halmos, A Hilbert space problem book, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0208368
- Roger A. Horn and Charles R. Johnson, Topics in matrix analysis, Cambridge University Press, Cambridge, 1994. Corrected reprint of the 1991 original. MR 1288752
- Vasile I. Istrăţescu, Introduction to linear operator theory, Monographs and Textbooks in Pure and Applied Mathematics, vol. 65, Marcel Dekker, Inc., New York, 1981. MR 608969
- F.D. Murnaghan, On the field of values of a square matrix, Proc. Natl. Acad. Sci. 18 (1932), 246-248.
Bibliographic Information
- Chi-Kwong Li
- Affiliation: Department of Mathematics, College of William and Mary, Williamsburg, Virginia 23187
- MR Author ID: 214513
- Email: ckli@cs.wm.edu
- Received by editor(s): January 17, 1995
- Additional Notes: This research was supported in part by a NATO grant.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1985-1986
- MSC (1991): Primary 15A60
- DOI: https://doi.org/10.1090/S0002-9939-96-03307-2
- MathSciNet review: 1322932