Schottky’s form and the hyperelliptic locus
HTML articles powered by AMS MathViewer
- by Cris Poor
- Proc. Amer. Math. Soc. 124 (1996), 1987-1991
- DOI: https://doi.org/10.1090/S0002-9939-96-03312-6
- PDF | Request permission
Abstract:
We show that Schottky’s modular form, $J_{g}$, has in every genus an irreducible divisor which contains the hyperelliptic locus. We also improve a corollary of Igusa concerning Siegel modular forms that must necessarily vanish on the hyperelliptic locus.References
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1993. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1194619, DOI 10.1007/978-1-4757-2249-9
- Eberhard Freitag, Die Irreduzibilität der Schottkyrelation (Bemerkung zu einem Satz von J. Igusa), Arch. Math. (Basel) 40 (1983), no. 3, 255–259 (German). MR 701272, DOI 10.1007/BF01192778
- Jun-ichi Igusa, Modular forms and projective invariants, Amer. J. Math. 89 (1967), 817–855. MR 229643, DOI 10.2307/2373243
- Jun-ichi Igusa, On the irreducibility of Schottky’s divisor, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 531–545 (1982). MR 656035
- Jun-ichi Igusa, Schottky’s invariant and quadratic forms, E. B. Christoffel (Aachen/Monschau, 1979) Birkhäuser, Basel-Boston, Mass., 1981, pp. 352–362. MR 661078
- Jun-ichi Igusa, Theta functions, Die Grundlehren der mathematischen Wissenschaften, Band 194, Springer-Verlag, New York-Heidelberg, 1972. MR 0325625, DOI 10.1007/978-3-642-65315-5
- S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 0000088, DOI 10.1007/BF03046993
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
Bibliographic Information
- Cris Poor
- Affiliation: Department of Mathematics, Fordham University, Bronx, New York 10458
- MR Author ID: 291737
- Email: poor@murray.fordham.edu
- Received by editor(s): October 24, 1994
- Received by editor(s) in revised form: January 30, 1995
- Communicated by: Albert Baernstein II
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1987-1991
- MSC (1991): Primary 11F46; Secondary 14K25, 11E45
- DOI: https://doi.org/10.1090/S0002-9939-96-03312-6
- MathSciNet review: 1327038