Real instantons, Dirac operators and quaternionic classifying spaces
HTML articles powered by AMS MathViewer
- by Paul Norbury and Marc Sanders
- Proc. Amer. Math. Soc. 124 (1996), 2193-2201
- DOI: https://doi.org/10.1090/S0002-9939-96-03358-8
- PDF | Request permission
Abstract:
Let $M(k,SO(n))$ be the moduli space of based gauge equivalence classes of $SO(n)$ instantons on principal $SO(n)$ bundles over $S^4$ with first Pontryagin class $p_1=2k$. In this paper, we use a monad description (Y. Tian, The Atiyah-Jones conjecture for classical groups, preprint, S. K. Donaldson, Comm. Math. Phys. 93 (1984), 453–460) of these moduli spaces to show that in the limit over $n$, the moduli space is homotopy equivalent to the classifying space $BSp(k)$. Finally, we use Dirac operators coupled to such connections to exhibit a particular and quite natural homotopy equivalence.References
- M. F. Atiyah, N. J. Hitchin, V. G. Drinfel′d, and Yu. I. Manin, Construction of instantons, Phys. Lett. A 65 (1978), no. 3, 185–187. MR 598562, DOI 10.1016/0375-9601(78)90141-X
- M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), no. 2, 97–118. MR 503187, DOI 10.1007/BF01609489
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- S. K. Donaldson, Instantons and geometric invariant theory, Comm. Math. Phys. 93 (1984), no. 4, 453–460. MR 763753, DOI 10.1007/BF01212289
- F. Kirwan, Geometric Invariant Theory and the Atiyah-Jones conjecture, Proceedings of the Sophus Lie Memorial Conference (Oslo, 1992), editors O.A. Laudal and B. Jahren, Scandinavian University Press, 1994, 161-188.
- M. Sanders, Classifying spaces and Dirac operators coupled to instantons, Transactions of the American Mathematical Society 347 (1995), 4037–4072.
- Y. Tian, The Atiyah-Jones Conjecture for Classical Groups, preprint.
Bibliographic Information
- Paul Norbury
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- MR Author ID: 361773
- Email: norbs@maths.warwick.ac.uk
- Marc Sanders
- Affiliation: Department of Mathematics, University of Minnesota, Minneapolis, Minneapolis, Minnesota 55455
- Email: sanders@math.umn.edu
- Received by editor(s): January 13, 1995
- Communicated by: Ronald Stern
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2193-2201
- MSC (1991): Primary 53C07, 55P38; Secondary 55R45
- DOI: https://doi.org/10.1090/S0002-9939-96-03358-8
- MathSciNet review: 1327032