Cohomology of groups with metacyclic Sylow -subgroups
Authors:
Jill Dietz, John Martino and Stewart Priddy
Journal:
Proc. Amer. Math. Soc. 124 (1996), 2261-2266
MSC (1991):
Primary 55R35; Secondary 20J06
DOI:
https://doi.org/10.1090/S0002-9939-96-03389-8
MathSciNet review:
1328344
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We determine the cohomology algebras for all groups
with a metacyclic Sylow
-subgroup. The complete
-local stable decomposition of the classifying space
is also determined.
- [BF] D. J. Benson and M. Feshbach, Stable splittings of classifying spaces of finite groups, Topology 31 (1992), no. 1, 157–176. MR 1153243, https://doi.org/10.1016/0040-9383(92)90068-S
- [Dh] Thomas Diethelm, The 𝑚𝑜𝑑𝑝 cohomology rings of the nonabelian split metacyclic 𝑝-groups, Arch. Math. (Basel) 44 (1985), no. 1, 29–38. MR 778989, https://doi.org/10.1007/BF01193778
- [D] Jill Dietz, Stable splittings of classifying spaces of metacyclic 𝑝-groups, 𝑝 odd, J. Pure Appl. Algebra 90 (1993), no. 2, 115–136. MR 1250764, https://doi.org/10.1016/0022-4049(93)90125-D
- [D1] Jill Dietz, Stable splittings of classifying spaces of metacyclic 2-groups, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2, 285–299. MR 1281547, https://doi.org/10.1017/S0305004100072583
- [G] D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), no. 2, 425–475. MR 476841, https://doi.org/10.1016/0021-8693(78)90116-3
- [HK] John C. Harris and Nicholas J. Kuhn, Stable decompositions of classifying spaces of finite abelian 𝑝-groups, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 3, 427–449. MR 932667, https://doi.org/10.1017/S0305004100065038
- [Hb] Johannes Huebschmann, The mod-𝑝 cohomology rings of metacyclic groups, J. Pure Appl. Algebra 60 (1989), no. 1, 53–103. MR 1014607, https://doi.org/10.1016/0022-4049(89)90107-2
- [Hu] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin-New York, 1967 (German). MR 0224703
- [M] John R. Martino, Classifying spaces of 𝑝-groups with cyclic maximal subgroups, Topology and representation theory (Evanston, IL, 1992) Contemp. Math., vol. 158, Amer. Math. Soc., Providence, RI, 1994, pp. 157–174. MR 1263716, https://doi.org/10.1090/conm/158/01457
- [MP] J. Martino and S. Priddy, On the cohomology and homotopy of Swan groups (to appear).
- [MP1] John Martino and Stewart Priddy, The complete stable splitting for the classifying space of a finite group, Topology 31 (1992), no. 1, 143–156. MR 1153242, https://doi.org/10.1016/0040-9383(92)90067-R
- [MP2] John Martino and Stewart Priddy, Classification of 𝐵𝐺 for groups with dihedral or quarternion Sylow 2-subgroups, J. Pure Appl. Algebra 73 (1991), no. 1, 13–21. MR 1121628, https://doi.org/10.1016/0022-4049(91)90103-9
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55R35, 20J06
Retrieve articles in all journals with MSC (1991): 55R35, 20J06
Additional Information
Jill Dietz
Affiliation:
Department of Mathematics, University of Washington, Seattle, Washington 98195
Address at time of publication:
Department of Mathematics and Computer Science, Gettysburg College, Gettysburg, Pennsylvania 17325
Email:
jdietz@gettysburg.edu
John Martino
Affiliation:
Department of Mathematics and Statistics, Western Michigan University, Kalamazoo, Michigan 49008
Email:
martino@wmich.edu
Stewart Priddy
Affiliation:
Department of Mathematics, Northwestern University, Evanston, Illinois 60208
Email:
s_priddy@math.nwu.edu
DOI:
https://doi.org/10.1090/S0002-9939-96-03389-8
Received by editor(s):
January 26, 1995
Additional Notes:
The third author is partially supported by NSF Grant DMS-9400235.
Communicated by:
Thomas Goodwillie
Article copyright:
© Copyright 1996
American Mathematical Society