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Abstract. We determine the cohomology algebras H∗(G; Fp) for all groups
G with a metacyclic Sylow p-subgroup. The complete p-local stable decompo-
sition of the classifying space BG is also determined.

1. Introduction and statement of results

Let P be a non-abelian metacyclic p-group of odd order and G a finite group with
P as a Sylow p-subgroup. In this note we classify all possible mod-p cohomology
algebras H∗(G) and determine complete p-local stable splittings for the classifying
spaces BG. Much of the topological part of this work was done by the first author
in [D]; recent results on Swan groups [MP] have enabled us to show that in all cases
H∗(G) is given by a ring of invariants. Similar but less complete information for
metacyclic 2-groups was obtained in [D1, MP2, M].

A metacyclic p-group is a p-group P which is an extension of a cyclic group
by a cyclic group. Following [D] we say that P is split if P can be expressed by
some split extension. We recall that up to isomorphism any non-abelian metacyclic
p-group can be expressed as

P = P (pm, pn, pl + 1, pq) = 〈x, y | xp
m

= 1, yp
n

= xp
q

, yxy−1 = xp
l+1〉

for positive integers m,n, l, q satisfying l, q ≤ m, (pl+1)p
n ≡ 1 mod pm, (pl+1)pq ≡

pq mod pm, n + l ≥ m and q + l ≥ m. In these terms P splits unless m 6= q and
l < q < n [D, Thm. 3.1].

Let WG(P ) = NG(P )/P · CG(P ); then WG(P ) ≤ Out(P ). If P is split, then
Out(P ) ∼= OpOut(P )oZ/(p−1) where OpOut(P ) is a Sylow p-subgroup [D, Prop.
3.2]. Therefore WG(P ) = Z/d where d is a divisor of p−1. If P is non-split, Out(P )
is a p-group and so WG(P ) = 1. We denote by Fp[·] and E[·] the polynomial and
exterior algebras over Fp.

Theorem 1.1. As an algebra, H∗(G) has one of the following forms:
(1) If P is split and l 6= m− n, then

H∗(G) ∼= H∗(P )WG(P ) = Fp[ud, v]⊗E[ad, b]
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where |ud| = 2d, |v| = 2, |ad| = 2d− 1, |b| = 1.
(2) If P is split and l = m− n, then

H∗(G) ∼= H∗(P )WG(P ) = Fp[v, z]⊗ E[b, α2i−1, i = 1, . . . , p]/R

where the relations R are given by

α2i−1α2j−1 = 0, 1 ≤ i, j ≤ p,

α2i−1v = 0, 1 ≤ i ≤ p− 1,

and |b| = 1, |v| = 2, |z| = 2p, |α2i−1| = 2i− 1 + 2pd(i), where 0 ≤ d(i) < d is the
residue of −i mod d.

(3) If P is non-split, then H∗(G) = H∗(P ) is isomorphic to the algebra of (1)
with d = 1 if m = l + q and to that of (2) with d = 1 if m < l + q.

Generators for these cohomology groups are specified explicitly in the proof.

Remark 1.2. Groups exemplifying the cases above are easily given by G = P oZ/d.
R. Lyons has suggested other, more natural examples, which occur as automor-

phism groups of Chevalley groups. For example, let Fq be a finite field of character-
istic different from p such that the Sylow p-subgroup of PSL2(Fq) has order p, i.e.,
q2−1 is divisible by p but not by p2. Then the Sylow p-subgroup of H = PSL2(Fqp)
is cyclic of order p2. Let φ be the Frobenius automorphism of Fqp of order p. Then
it is easy to see that φ fixes a cyclic subgroup C ≤ H of order pq + 1 which con-
tains one such Sylow p-subgroup. Thus G = Aut(H) = PSL2(Fq) o Z/p〈φ〉 has
P = M3(p) as a Sylow p-subgroup. Furthermore NH(C) is a dihedral group [Hu,
II, 8.4 Satz] containing the permutation matrix of order two. Since this matrix is
fixed by φ, WG(P ) = Z/2 and H∗(G) is of type (2) in Theorem 1.1 with d = 2.

The group cohomology of a group G is the cohomology of the classifying space
BG of G. The space BG is stably homotopy equivalent to a wedge product of
indecomposable spectra,

BG ' X1 ∨X2 ∨ · · · ∨Xn.

A complete stable decomposition of BG is a splitting into indecomposable spectra.
The decomposition is unique up to stable homotopy type and ordering. If G is a
p-group, then all of these spectra are p-local. Otherwise, if P is a Sylow p-subgroup
of G, then a simple transfer argument shows the p-localization of BG is a stable
summand of BP ,

BP ' BGp ∨ Y,

where BGp is the p-localization of BG. Hence BGp consists of some, but possibly
not all, of the summands of BP . Note H∗(BGp; Fp) = H∗(BG; Fp).

Each indecomposable spectrum X of BP corresponds up to conjugacy to a prim-
itive idempotent e in the ring of stable self-maps {BP,BP}. The spectrum X is
the infinite mapping telescope or homotopy colimit of e,

X ' eBP = Tel(BP
e−→ BP ) = hocolim(BP

e−→ BP
e−→ · · · ).

For more information see either [BF] or [MP1].
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For the remainder of the paper all spectra are localized at the prime p. If P is a
Swan group, then BG ' BNG(P ) ' B(P oWG(P )). Thus determining the stable
homotopy type of BG involves determining which summands have their cohomology
left invariant by the action of the Weyl group of G.

ZpOut(P ) ⊆ {BP,BP} is a subring, in fact a retract. Therefore, certain in-
decomposable summands of BP correspond to simple modules of the outer auto-
morphism group Out(P ). A summand corresponding to a simple Out(P )-module
is said to originate in BP . A summand originating in BP does not occur as the
summand of the classifying space of any proper subgroup of P .

In this paragraph we introduce some notation for Theorem 1.3 below. L(2, k)
originates in B(Z/p×Z/p) and corresponds to St⊗(det)k where St is the Steinberg
module for FpGL2(Fp) and det is the determinant module. It is well known that
the group ring Fp[Z/(p−1)] has a complete set of orthogonal primitive idempotents
e0, ..., ep−2 [D]. Lifting these idempotents to Zp[Z/(p − 1)] determines a complete
stable splitting of

BZ/pn '
p−2∨
i=0

L(1, n, i),

where L(1, n, i) originates in BZ/pn. For more information on these summands see
[HK] and [D].

If P is a split metacyclic p-group, then since WG(P ) is a p′-group, we have
WG(P ) ≤ Z/(p− 1). Thus the primitive idempotents e0, ..., ep−2 above determine
a stable splitting of BG. If P is non-split, then BP is stably indecomposable [D,
Thm. 1.3].

Among the split metacyclic groups there is one which plays a special role, the
extra-special modular group M3(p) = P (p2, p, p + 1, 1). It is characterized by its
order and exponent which are p3 and p2 respectively.

Theorem 1.3. (1) If P is split and P 6= M3(p), then

e0BP = X0 ∨B(Z/pn), eiBP = Xi, l = m− n, 1 ≤ i ≤ p− 2.

e0BP = X0∨B(Z/pn)∨L(1, n, 0), eiBP = Xi∨L(1, n, i), l 6= m−n, 1 ≤ i ≤ p−2.

(2) If P = M3(p), then

e0BP = X0 ∨
p−2∨
i=0

L(2, i) ∨ L(1, 1, i), eiBP = Xi, 1 ≤ i ≤ p− 2,

where Xi originates in BP .

(3) In both cases this yields a complete stable decomposition of BP and

BG '
(p−1/d)−1∨

i=0

eidBP.
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Corollary 1.4. Localized at p, the complete stable decomposition of BG is given
by one of the following:

(1) If P is non-split, then BG ' BP .
(2) If P is split and P 6= M3(p), then

BG '
(p−1/d)−1∨

i=0

Xid ∨
p−2∨
j=0

L(1, n, j), l = m− n.

BG '
(p−1/d)−1∨

i=0

Xid ∨ L(1, n, id) ∨
p−2∨
j=0

L(1, n, j), l 6= m− n.

(3) If P = M3(p), then

BG '
(p−1/d)−1∨

i=0

Xid ∨
p−2∨
i=0

L(2, i) ∨ L(1, 1, i).

If P is split and P 6= M3(p), then Theorem 1.3 and Corollary 1.4 were proved
by the first author [D, Thm. 1.3].

Throughout we assume P is a non-abelian metacyclic p-group and p is an odd
prime. All cohomology is taken with simple coefficients in Fp and all spaces are
considered stably, localized at p.

2. Proofs

The classifying space BP is indecomposable if and only if P is non-split [D, Thm.
1.1]. Thus, since BG is a summand inBP , we haveBG ' BP andH∗(G) ∼= H∗(P ).
In this case the cohomology algebras are given by [Hb, Thm. B if m < l + q and
Thm. E if m = l+ q]. This completes the proof of both theorems for the non-split
case.

Before turning to the proof of Theorem 1.1 we recall the notion of a Swan group
[MP]. A p-group P is called a Swan group if the cohomology of any group G with
P as a Sylow p-subgroup is given by its invariants, i.e.,

res : H∗(G; Fp)
∼=−→ H∗(P ; Fp)

WG(P ).

The following result of Dietz and Glauberman [MP] is fundamental to our classifi-
cation.

Theorem 2.1. If P is a metacyclic group of odd order, then P is a Swan group.

Proof of Theorem 1.1 for P split. Let Φ(P ) = 〈xp, yp〉 be the Frattini subgroup.
Then P/Φ(P ) ∼= Z/p × Z/p = 〈x, y〉. Thus quotienting by Φ(P ) induces a homo-

morphism Out(P )
π−→ Aut(P/Φ(P )) = GL2(Fp). By [D, Prop. 3.2] if P is split,

then Out(P ) ∼= OpOut(P )o Z/(p− 1); moreover,

(1)

(
∗ 0
0 1

)
∈ Im(π).
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Now consider the extension

1→ N → P → K → 1

where N ∼= Z/pm = 〈x〉 and K ∼= Z/pn = 〈y〉. The Lyndon-Hochschild-Serre
spectral sequence has E2 = Fp[u, v]⊗E[a, b] where H∗(N) = Fp[u]⊗E[a], H∗(K) =
Fp[v] ⊗ E[b], |a| = |b| = 1, |u| = |v| = 2. Explicitly, a, b are given as canonical
homomorphisms dual to x, y respectively, and u = βn(a), v = βm(b) are their
respective Bocksteins.

If l 6= m−n, then this spectral sequence collapses at E2 [Dh, Thm.1]. Since P is
a Swan group, we need only compute invariants. Let ζ be a generator of Z/(p−1) ≤
Out(P ) so that γ = ζp−1/d generates WG(P ) = Z/d. By (1) γ∗(a) = c · a where
cd = 1 is a primitive d-th root of unity; γ∗(u) = c·u by application of the Bockstein.
Similarly γ∗ is trivial on v, b. Computing we find γ∗(ukvlaεbδ) = ukvlaεbδ iff
k + ε ≡ 0 mod d. Theorem 1.1 (1) follows with ud = ud, ad = ud−1a.

If l = m − n the spectral sequence collapses at E3 [Dh, Thm.2] and we have
E3 = Fp[z, v] ⊗ E[b, ξ2i−1, i = 1, ..., p]/R where z = up, ξ2i−1 = aui−1. Relations
are given by

ξ2i−1ξ2j−1 = 0, 1 ≤ i, j ≤ p,
ξ2i−1v = 0, 1 ≤ i ≤ p− 1.

In this case, γ∗(z) = c · z, γ∗(ξ2i−1) = ci · ξ2i−1. For d > 1 we have invariants zd

and α2i−1 = ξ2i−1z
d(i), where 0 ≤ d(i) < d is the residue of −i mod d. The result

follows. For d = 1, H∗(G) = H∗(P ) and the result holds setting α2i−1 = ξ2i−1

since d(i) = 0 in this case. �
Proof of Theorem 1.3 for P = M3(p). In this case we have [D, Thm. 1.1 (3)]

BP '
p−2∨
i=0

Xi ∨
p−2∨
k=0

L(2, k) ∨
p−2∨
k=0

L(1, 1, k).

Since P is a Swan group, we may assume G = NG(P ) and CG(P ) < P , i.e.,
P C G and G = P o C, where C ≤ Z/(p− 1). From (1) in the proof of Theorem
1.1 it is clear that the subgroup 〈x〉oC is normal in G = P oC. Therefore, Z/p〈y〉
is a retract of G; hence, BZ/p is a summand of BG for every G with M3(p) as a
Sylow p-subgroup. Thus

BZ/p =

p−2∨
k=0

L(1, 1, k)

is a summand of e0BP = B(P o Z/(p− 1)).
We are reduced to showing L(2, k) is a summand of e0BP . Let Q = 〈xp, y〉 ∼=

Z/p× Z/p. Since L(2, k) corresponds to the simple FpOut(Q)-module Mk = St⊗
(det)k, we can use the criterion developed in [MP1]. That is, since Q is not a retract
of P and CP (Q) = Q, we must show

NG(Q)/Q ·Mk 6= 0

where H =
∑
h summed over h ∈ H ≤ Fp(H). Since CG(Q)/Q is a p′-group, this

is equivalent to
NG(Q)/CG(Q) ·Mk 6= 0
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where NG(Q)/CG(Q) ≤ GL2(Fp). An explicit description of the Steinberg module
St may be given as follows: St = 〈up−1, up−2v, . . . , uvp−2, vp−1〉 is the Fp-module
of polynomials in indeterminates u, v of homogeneous degree p − 1 with GL2(Fp)
acting on 〈u, v〉 in the standard way [G]. Furthermore

NG(Q)/CG(Q) = NG(Q)/PCG(Q) · P/Q.

According to [D, Prop. 4.6 and Proof]

P/Q ·Mk = 〈vp−1〉.

Since NG(Q)/CG(Q) is a p′-group normalizing P/Q, we may assume it is isomorphic
to a subgroup of the Borel subgroup of upper triangular matrices, i.e., the matrices
of the form

w =

(
a 0
0 b

)
.

Thus w(vp−1) = bp−1vp−1 = vp−1, and so NG(Q)/PCG(Q) · vp−1 6= 0. �
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