Resonance and non-resonance
in a problem of boundedness
Authors:
Rafael Ortega and Antonio Tineo
Journal:
Proc. Amer. Math. Soc. 124 (1996), 2089-2096
MSC (1991):
Primary 34B15, 34C11
DOI:
https://doi.org/10.1090/S0002-9939-96-03457-0
MathSciNet review:
1342038
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper studies the existence of bounded solutions of a forced non-linear differential equation of arbitrary order. Necessary and sufficient conditions for the existence of such solutions are obtained. These results are inspired by classical results on the periodic problem, both in the resonant and non-resonant cases.
- 1. Shair Ahmad, A nonstandard resonance problem for ordinary differential equations, Trans. Amer. Math. Soc. 323 (1991), no. 2, 857–875. MR 1010407, https://doi.org/10.1090/S0002-9947-1991-1010407-9
- 2. W. A. Coppel, Dichotomies in stability theory, Lecture Notes in Mathematics, Vol. 629, Springer-Verlag, Berlin-New York, 1978. MR 0481196
- 3. M. A. Krasnosel′skiĭ and P. P. Zabreĭko, Geometrical methods of nonlinear analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 263, Springer-Verlag, Berlin, 1984. Translated from the Russian by Christian C. Fenske. MR 736839
- 4. R. Ortega, A boundedness result of Landesman - Lazer type, Differential and Integral Equations, 8 (1995), 729--734. CMP 95:05
- 5. G. Reuter, Boundedness theorems for nonlinear differential equations of the second order (II), J. London Math. Soc., 27 (1952), 48-58. MR 13:844b
- 6. N. Rouche and J. Mawhin, Équations différentielles ordinaires, Masson et Cie, Éditeurs, Paris, 1973 (French). Tome I: Théorie générale. MR 0481181
- 7. A. Tineo, An iterative scheme for the N-competing species problem, J. Diff. Eq. 116 (1995), 1--15.
- 8. James R. Ward Jr., Asymptotic conditions for periodic solutions of ordinary differential equations, Proc. Amer. Math. Soc. 81 (1981), no. 3, 415–420. MR 597653, https://doi.org/10.1090/S0002-9939-1981-0597653-2
- 9. James R. Ward Jr., A topological method for bounded solutions of nonautonomous ordinary differential equations, Trans. Amer. Math. Soc. 333 (1992), no. 2, 709–720. MR 1066450, https://doi.org/10.1090/S0002-9947-1992-1066450-8
- 10. T. Yoshizawa, Stability theory and the existence of periodic solutions and almost periodic solutions, Springer-Verlag, New York-Heidelberg, 1975. Applied Mathematical Sciences, Vol. 14. MR 0466797
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34B15, 34C11
Retrieve articles in all journals with MSC (1991): 34B15, 34C11
Additional Information
Rafael Ortega
Affiliation:
Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada, Spain
Email:
rortega@goliat.ugr.es
Antonio Tineo
Affiliation:
Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, 5101-Mérida, Venezuela
Email:
atineo@ciens.ula.ve
DOI:
https://doi.org/10.1090/S0002-9939-96-03457-0
Received by editor(s):
January 18, 1995
Communicated by:
Hal L. Smith
Article copyright:
© Copyright 1996
American Mathematical Society