Multiple path-valued conditional Yeh-Wiener integrals
HTML articles powered by AMS MathViewer
- by Chull Park and David Skoug
- Proc. Amer. Math. Soc. 124 (1996), 2029-2039
- DOI: https://doi.org/10.1090/S0002-9939-96-03458-2
- PDF | Request permission
Abstract:
In this paper we establish various results involving parallel line-valued conditional Yeh-Wiener integrals of the type $E(F(x)|x(s_j,\boldsymbol {\cdot })=\eta _j(\boldsymbol {\cdot })$, $j=1,\dotsc ,n)$ where $0<s_1<\cdots <s_n$. We then develop a formula for converting these multiple path-valued conditional Yeh-Wiener integrals into ordinary Yeh-Wiener integrals. Next, conditional Yeh-Wiener integrals for functionals $F$ of the form \[ F(x)=\exp \left \{\int _0^S\int _0^T\phi (s,t,x(s,t)) dt ds\right \} \] are evaluated by solving an appropriate Wiener integral equation. Finally, a Cameron-Martin translation theorem is obtained for these multiple path-valued conditional Yeh-Wiener integrals.References
- R. H. Cameron and D. A. Storvick, Two related integrals over spaces of continuous functions, Pacific J. Math. 55 (1974), 19–37. MR 369649, DOI 10.2140/pjm.1974.55.19
- R. H. Cameron and D. A. Storvick, An operator-valued Yeh-Feynman integral and a Feynman integral equation, Japan. J. Math. (N.S.) 6 (1980), no. 2, 283–342. MR 615173, DOI 10.4099/math1924.6.283
- Kun Soo Chang, Jae Moon Ahn, and Joo Sup Chang, An evaluation of the conditional Yeh-Wiener integral, Pacific J. Math. 124 (1986), no. 1, 107–117. MR 850669, DOI 10.2140/pjm.1986.124.107
- Dong M. Chung and Jae Moon Ahn, Conditional Yeh-Wiener integrals, J. Korean Math. Soc. 20 (1983), no. 2, 209–221. MR 745356
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Timothy Huffman, Chull Park, and David Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), no. 2, 661–673. MR 1242088, DOI 10.1090/S0002-9947-1995-1242088-7
- Chull Park, On Fredholm transformations in Yeh-Wiener space, Pacific J. Math. 40 (1972), 173–195. MR 304604, DOI 10.2140/pjm.1972.40.173
- Chull Park and David Skoug, Conditional Yeh-Wiener integrals with vector-valued conditioning functions, Proc. Amer. Math. Soc. 105 (1989), no. 2, 450–461. MR 960650, DOI 10.1090/S0002-9939-1989-0960650-6
- Chull Park and David Skoug, Sample path-valued conditional Yeh-Wiener integrals and a Wiener integral equation, Proc. Amer. Math. Soc. 115 (1992), no. 2, 479–487. MR 1104401, DOI 10.1090/S0002-9939-1992-1104401-3
- Chull Park and David Skoug, An operator-valued Yeh-Wiener integral and a Kac-Feynman Wiener integral equation, Proc. Amer. Math. Soc. 120 (1994), no. 3, 929–942. MR 1213867, DOI 10.1090/S0002-9939-1994-1213867-1
- J. Yeh, Wiener measure in a space of functions of two variables, Trans. Amer. Math. Soc. 95 (1960), 433–450. MR 125433, DOI 10.1090/S0002-9947-1960-0125433-1
- J. Yeh, Cameron-Martin translation theorems in the Wiener space of functions of two variables, Trans. Amer. Math. Soc. 107 (1963), 409–420. MR 189138, DOI 10.1090/S0002-9947-1963-0189138-6
- J. Yeh, Inversion of conditional Wiener integrals, Pacific J. Math. 59 (1975), no. 2, 623–638. MR 390162, DOI 10.2140/pjm.1975.59.623
- —, Stochastic processes and the Wiener integral, Marcel Dekker, New York, 1983.
Bibliographic Information
- Chull Park
- Affiliation: Department of Mathematics & Statistics, Miami University, Oxford, Ohio 45056
- Email: cpark@miavxl.acs.muohio.edu
- David Skoug
- Affiliation: Department of Mathematics & Statistics, University of Nebraska, Lincoln, Nebraska 68588-0323
- Email: dskoug@unl.edu
- Received by editor(s): December 14, 1994
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2029-2039
- MSC (1991): Primary 28C20, 60J65
- DOI: https://doi.org/10.1090/S0002-9939-96-03458-2
- MathSciNet review: 1342039