Subalgebras of free algebras
HTML articles powered by AMS MathViewer
- by A. A. Mikhalev, V. E. Shpilrain and A. A. Zolotykh
- Proc. Amer. Math. Soc. 124 (1996), 1977-1984
- DOI: https://doi.org/10.1090/S0002-9939-96-03593-9
- PDF | Request permission
Abstract:
We use non-commutative Jacobian matrix to get information on finitely generated subalgebras of a free Lie algebra. In particular, we show that the rank of such a subalgebra is equal to the left rank (i.e., to the maximal number of left independent rows) of the corresponding Jacobian matrix; this also yields an effective procedure for finding the rank of a finitely generated subalgebra.References
- Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, DOI 10.1090/S0273-0979-1982-15032-7
- Joan S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634–638. MR 330295, DOI 10.1090/S0002-9939-1973-0330295-8
- P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- Warren Dicks and Jacques Lewin, A Jacobian conjecture for free associative algebras, Comm. Algebra 10 (1982), no. 12, 1285–1306. MR 660345, DOI 10.1080/00927878208822776
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- A. A. Zolotykh and A. A. Mikhalëv, The rank of an element of a free Lie $(p)$-superalgebra, Dokl. Akad. Nauk 334 (1994), no. 6, 690–693 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 49 (1994), no. 1, 189–193. MR 1273933
- Alexander A. Mikhalev and Andrej A. Zolotykh, Rank and primitivity of elements of free colour Lie ($p$-)superalgebras, Internat. J. Algebra Comput. 4 (1994), no. 4, 617–655. MR 1313130, DOI 10.1142/S021819679400018X
- Christophe Reutenauer, Applications of a noncommutative Jacobian matrix, J. Pure Appl. Algebra 77 (1992), no. 2, 169–181. MR 1149019, DOI 10.1016/0022-4049(92)90083-R
- Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Vladimir Shpilrain, On generators of $L/R^2$ Lie algebras, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1039–1043. MR 1154249, DOI 10.1090/S0002-9939-1993-1154249-X
- V. Shpilrain, On monomorphisms of free groups. Arch. Math., 46 (1995), 465-470.
- U. U. Umirbaev, Partial derivations and endomorphisms of some relatively free Lie algebras, Sibirsk. Mat. Zh. 34 (1993), no. 6, 179–188, iv, x (Russian, with English and Russian summaries); English transl., Siberian Math. J. 34 (1993), no. 6, 1161–1170. MR 1268170, DOI 10.1007/BF00973481
- U. U. Umirbaev, Some algorithmic questions concerning associative algebras, Algebra i Logika 32 (1993), no. 4, 450–470, 474 (Russian, with Russian summary); English transl., Algebra and Logic 32 (1993), no. 4, 244–255 (1994). MR 1286789, DOI 10.1007/BF02261749
- U. U. Umirbaev, Primitive elements of free groups. Russian Math. Surveys 49 (1994), no. 2, 184–185.
- U. U. Umirbaev, On the rank of elements of free groups. Fundamentalnaya i Prikladnaya Matematika 2 (1966), 313–315. (Russian)
- A. V. Jagžev, On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank, Sibirsk. Mat. Zh. 21 (1980), no. 1, 193–199, 238 (Russian). MR 562034
Bibliographic Information
- A. A. Mikhalev
- Affiliation: Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia
- Email: aamikh@cnit.math.msu.su
- V. E. Shpilrain
- Affiliation: Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Address at time of publication: Department of Mathematics, University of California, Santa Barbara, California 93106
- Email: shpil@math.ucsb.edu
- A. A. Zolotykh
- Affiliation: Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia
- Email: zolotykh@cnit.math.msu.su
- Received by editor(s): January 9, 1995
- Additional Notes: The first and third authors were partially supported by the Russian Foundation for Fundamental Research, by the International Science Foundation, and by INTAS
The second author was supported by MINERVA Fellowship. - Communicated by: Lance W. Small
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 1977-1984
- MSC (1991): Primary 17B01; Secondary 16S10, 13F20
- DOI: https://doi.org/10.1090/S0002-9939-96-03593-9
- MathSciNet review: 1350957