On rigidity of affine surfaces
Author:
Barbara Opozda
Journal:
Proc. Amer. Math. Soc. 124 (1996), 2175-2184
MSC (1991):
Primary 53A15; Secondary 53B05
DOI:
https://doi.org/10.1090/S0002-9939-96-03715-X
MathSciNet review:
1363435
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Rigidity of nondegenerate Blaschke surfaces in is studied. The rigidity criteria are given in terms of
, where
is the curvature of the Blaschke connection
. If the rank of
is 2, then the surface is rigid. If
, it is nonrigid. In the case where the rank of
is 1 there are both rigid and nonrigid surfaces. This case is discussed for various types of surfaces.
- [C] E. Cartan, Sur la connexion affine des surfaces, C. R. Acad. Sci. Paris 178 (1924), 292-295.
- [DNV] Franki Dillen, Katsumi Nomizu, and Luc Vranken, Conjugate connections and Radon’s theorem in affine differential geometry, Monatsh. Math. 109 (1990), no. 3, 221–235. MR 1058409, https://doi.org/10.1007/BF01297762
- [NO] Katsumi Nomizu and Barbara Opozda, Integral formulas for affine surfaces and rigidity theorems of Cohn-Vossen type, Geometry and topology of submanifolds, IV (Leuven, 1991) World Sci. Publ., River Edge, NJ, 1992, pp. 133–142. MR 1185721
- [NS] K. Nomizu, T. Sasaki, Affine Differential Geometry, Cambridge University Press, 1994. CMP 95:06
- [O1] Barbara Opozda, Locally symmetric connections on surfaces, Results Math. 20 (1991), no. 3-4, 725–743. Affine differential geometry (Oberwolfach, 1991). MR 1145305, https://doi.org/10.1007/BF03323207
- [O2] B. Opozda, A class of projectively flat surfaces, Math. Z. 219 (1995), 77-92. CMP 95:15
- [OS] B. Opozda, T. Sasaki, Surfaces whose affine normal images are curves, Kyushu J. Math. 49 (1995), 1-10.
- [S] Udo Simon, Global uniqueness for ovaloids in Euclidean and affine differential geometry, Tohoku Math. J. (2) 44 (1992), no. 3, 327–334. MR 1176075, https://doi.org/10.2748/tmj/1178227299
- [Sl] W. Slebodzinski, Sur quelques problèmes de la théorie des surfaces de l'espace affine, Prace Mat. Fiz. 46 (1939), 291-345.
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 53A15, 53B05
Retrieve articles in all journals with MSC (1991): 53A15, 53B05
Additional Information
Barbara Opozda
Affiliation:
Instytut Matematyki, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Email:
opozda@im.uj.edu.pl
DOI:
https://doi.org/10.1090/S0002-9939-96-03715-X
Keywords:
Blaschke surface,
metric compatible with connection
Received by editor(s):
May 31, 1994
Additional Notes:
The research was supported by the Kambara Fund of Kobe University and the KBN grant 2P30103004.
Communicated by:
Christopher Croke
Article copyright:
© Copyright 1996
American Mathematical Society