## A topological characterization of linearity for quasi-traces

HTML articles powered by AMS MathViewer

- by L. J. Bunce and J. D. Maitland Wright
- Proc. Amer. Math. Soc.
**124**(1996), 2377-2381 - DOI: https://doi.org/10.1090/S0002-9939-96-03288-1
- PDF | Request permission

## Abstract:

Let $\mathcal A$ be a $C^\ast$-algebra, and let $\mu$ be a (local) quasi-trace on $\mathcal A$. Then $\mu$ is linear if, and only if, the restriction of $\mu$ to the closed unit ball of $\mathcal A$ is uniformly weakly continuous.## References

- Johan F. Aarnes,
*Quasi-states on $C^{\ast }$-algebras*, Trans. Amer. Math. Soc.**149**(1970), 601–625. MR**282602**, DOI 10.1090/S0002-9947-1970-0282602-4 - Johan F. Aarnes,
*Quasi-states and quasi-measures*, Adv. Math.**86**(1991), no. 1, 41–67. MR**1097027**, DOI 10.1016/0001-8708(91)90035-6 - Charles A. Akemann and Stuart M. Newberger,
*Physical states on a $C^*$-algebra*, Proc. Amer. Math. Soc.**40**(1973), 500. MR**318860**, DOI 10.1090/S0002-9939-1973-0318860-5 - Bruce Blackadar and David Handelman,
*Dimension functions and traces on $C^{\ast }$-algebras*, J. Functional Analysis**45**(1982), no. 3, 297–340. MR**650185**, DOI 10.1016/0022-1236(82)90009-X - L. J. Bunce and J. D. Maitland Wright,
*The Mackey-Gleason problem for vector measures on projections in von Neumann algebras*, J. London Math. Soc. (2)**49**(1994), no. 1, 133–149. MR**1253018**, DOI 10.1112/jlms/49.1.133 - L. J. Bunce and J. D. Maitland Wright,
*Skew-symmetric functions on the sphere and quantum measures*, Exposition. Math.**12**(1994), no. 3, 271–280. MR**1295710** - L. J. Bunce and J. D. Maitland Wright,
*Skew-symmetric functions on the sphere and quantum measures*, Exposition. Math.**12**(1994), no. 3, 271–280. MR**1295710** - —,
*Non-linearity and approximate additivity*, Expositiones Math.**12**(1994), 363–370. . - Erik Christensen,
*Measures on projections and physical states*, Comm. Math. Phys.**86**(1982), no. 4, 529–538. MR**679201**, DOI 10.1007/BF01214888 - Don Deckard and Carl Pearcy,
*On matrices over the ring of continuous complex valued functions on a Stonian space*, Proc. Amer. Math. Soc.**14**(1963), 322–328. MR**147926**, DOI 10.1090/S0002-9939-1963-0147926-1 - U. Haagerup,
*Quasitraces on exact $C^\ast$-algebras*, manuscript. - David Handelman,
*Homomorphisms of $C^{\ast }$ algebras to finite $AW^{\ast }$ algebras*, Michigan Math. J.**28**(1981), no. 2, 229–240. MR**616272** - F. J. Yeadon,
*Finitely additive measures on projections in finite $W^{\ast }$-algebras*, Bull. London Math. Soc.**16**(1984), no. 2, 145–150. MR**737242**, DOI 10.1112/blms/16.2.145

## Bibliographic Information

**L. J. Bunce**- Affiliation: Department of Mathematics, The University of Reading, White Knights, P. O. Box 220, Reading RG6 2AX, England
**J. D. Maitland Wright**- Affiliation: Isaac Newton Institute, 20 Clarkson Road, Cambridge, England
- Received by editor(s): May 16, 1994
- Received by editor(s) in revised form: January 24, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 2377-2381 - MSC (1991): Primary 46L30, 46L05
- DOI: https://doi.org/10.1090/S0002-9939-96-03288-1
- MathSciNet review: 1322914