Generalized contraction mapping principle and differential equations in probabilistic metric spaces
HTML articles powered by AMS MathViewer
- by S. S. Chang, B. S. Lee, Y. J. Cho, Y. Q. Chen, S. M. Kang and J. S. Jung
- Proc. Amer. Math. Soc. 124 (1996), 2367-2376
- DOI: https://doi.org/10.1090/S0002-9939-96-03289-3
- PDF | Request permission
Abstract:
A new generalized contraction mapping principle in probabilistic metric spaces is obtained. As an application, we utilize this principle to prove the existence theorems of solutions to differential equations in probabilistic metric spaces. All the results presented in this paper are new.References
- Shi Sen Chang, On the theory of probabilistic metric spaces with applications, Z. Wahrsch. Verw. Gebiete 67 (1984), no. 1, 85–94. MR 756806, DOI 10.1007/BF00534084
- Shi Sheng Zhang, Yu Qing Chen, and Jin Li Guo, Ekeland’s variational principle and Caristi’s fixed point theorem in probabilistic metric space, Acta Math. Appl. Sinica (English Ser.) 7 (1991), no. 3, 217–228. MR 1132061, DOI 10.1007/BF02005971
- S. S. Chang, Y. J. Cho, and S. M. Kang, Probabilistic metric spaces and nonlinear operator theory, Sichuan Univ. Press, P. R. China, 1994.
- B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10 (1960), 313–334. MR 115153, DOI 10.2140/pjm.1960.10.313
- B. Schweizer, A. Sklar, and E. Thorp, The metrization of statistical metric spaces, Pacific J. Math. 10 (1960), 673–675. MR 115154, DOI 10.2140/pjm.1960.10.673
Bibliographic Information
- S. S. Chang
- Affiliation: Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China
- B. S. Lee
- Affiliation: Department of Mathematics, Kyungsung University, Pusan 608-736, Korea
- Email: bslee@ksmath.kyungsung.ac.kr
- Y. J. Cho
- Affiliation: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea
- Y. Q. Chen
- Affiliation: Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, People’s Republic of China
- S. M. Kang
- Affiliation: Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea
- J. S. Jung
- Affiliation: Department of Mathematics, Dong-A University, Pusan 604-714, Korea
- Email: jungjs@seunghak.donga.ac.kr
- Received by editor(s): January 3, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2367-2376
- MSC (1991): Primary 46S50, 34G20, 54H25
- DOI: https://doi.org/10.1090/S0002-9939-96-03289-3
- MathSciNet review: 1322915