## Completely positive projections on a Hilbert space

HTML articles powered by AMS MathViewer

- by Yasuhide Miura
- Proc. Amer. Math. Soc.
**124**(1996), 2475-2478 - DOI: https://doi.org/10.1090/S0002-9939-96-03321-7
- PDF | Request permission

## Abstract:

The purpose of this paper is to prove that a completely positive projection on a Hilbert space associated with a standard form of a von Neumann algebra induces the existence of a conditional expectation of the von Neumann algebra with respect to a normal state, and we consider the application to a standard form of an injective von Neumann algebra.## References

- Huzihiro Araki,
*Some properties of modular conjugation operator of von Neumann algebras and a non-commutative Radon-Nikodym theorem with a chain rule*, Pacific J. Math.**50**(1974), 309–354. MR**350437**, DOI 10.2140/pjm.1974.50.309 - Man Duen Choi and Edward G. Effros,
*Injectivity and operator spaces*, J. Functional Analysis**24**(1977), no. 2, 156–209. MR**0430809**, DOI 10.1016/0022-1236(77)90052-0 - Alain Connes,
*Caractérisation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann*, Ann. Inst. Fourier (Grenoble)**24**(1974), no. 4, x, 121–155 (1975) (French, with English summary). MR**377533** - A. Connes,
*Classification of injective factors. Cases $II_{1},$ $II_{\infty },$ $III_{\lambda },$ $\lambda \not =1$*, Ann. of Math. (2)**104**(1976), no. 1, 73–115. MR**454659**, DOI 10.2307/1971057 - Uffe Haagerup,
*The standard form of von Neumann algebras*, Math. Scand.**37**(1975), no. 2, 271–283. MR**407615**, DOI 10.7146/math.scand.a-11606 - B. Iochum,
*Cônes autopolaires dans les espaces de Hilbert*, Thèse, Univ. de Provence Centre de Saint-Charles, 1975. - Bruno Iochum,
*Cônes autopolaires et algèbres de Jordan*, Lecture Notes in Mathematics, vol. 1049, Springer-Verlag, Berlin, 1984 (French). MR**764767**, DOI 10.1007/BFb0071358 - Yasuhide Miura,
*A certain factorization of self-dual cones associated with standard forms of injective factors*, Tokyo J. Math.**13**(1990), no. 1, 73–86. MR**1059015**, DOI 10.3836/tjm/1270133005 - Yasuhide Miura and Jun Tomiyama,
*On a characterization of the tensor product of self-dual cones associated to the standard von Neumann algebras*, Sci. Rep. Niigata Univ. Ser. A**20**(1984), 1–11. MR**743064** - Lothar M. Schmitt,
*Characterization of $L^2({\scr M})$ for injective $W^\ast$-algebras ${\scr M}$*, Math. Scand.**57**(1985), no. 2, 267–280. MR**832357**, DOI 10.7146/math.scand.a-12117 - Lothar M. Schmitt and Gerd Wittstock,
*Characterization of matrix-ordered standard forms of $W^{\ast }$-algebras*, Math. Scand.**51**(1982), no. 2, 241–260 (1983). MR**690530**, DOI 10.7146/math.scand.a-11979 - Masamichi Takesaki,
*Conditional expectations in von Neumann algebras*, J. Functional Analysis**9**(1972), 306–321. MR**0303307**, DOI 10.1016/0022-1236(72)90004-3 - Masamichi Takesaki,
*Theory of operator algebras. I*, Springer-Verlag, New York-Heidelberg, 1979. MR**548728**, DOI 10.1007/978-1-4612-6188-9

## Bibliographic Information

**Yasuhide Miura**- Affiliation: Department of Mathematics, College of Humanities and Social Sciences, Iwate University, Morioka 020, Japan
- Received by editor(s): October 12, 1994
- Received by editor(s) in revised form: February 28, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 2475-2478 - MSC (1991): Primary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-96-03321-7
- MathSciNet review: 1327028