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COMPLETELY POSITIVE PROJECTIONS
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(Communicated by Palle E. T. Jorgensen)

Abstract. The purpose of this paper is to prove that a completely positive
projection on a Hilbert space associated with a standard form of a von Neu-
mann algebra induces the existence of a conditional expectation of the von
Neumann algebra with respect to a normal state, and we consider the appli-
cation to a standard form of an injective von Neumann algebra.

Introduction

Many authors have studied the problem of how an algebraic structure of a von
Neumann algebra is determined by the underlying Hilbert space. Connes [C1]
introduced an orientation of a homogeneous selfdual cone in a Hilbert space and
characterized the Hilbert space associated with a standrd form of a von Neumann
algebra. A geometric interpretation was given by Iochum [I1] to an algebraic notion
of a conditional expectation (i.e., a projection of norm one) of a von Neumann
algebra by using an orientation property in a selfdual cone.

On the other hand, Schmitt and Wittstock [SW] characterized a matrix-ordered
Hilbert space with a family of selfdual cones arising from standard forms of von
Neumann algebras by a projection property instead of orientation. Matrix-ordered
spaces were first introduced by Choi and Effros [CE] as the appropriate objects to
which completely positive maps apply and enabled us to handle non-commutative
order. In [M] the author proved that a faithful normal conditional expectation with
respect to a cyclic and separating vector on a von Neumann algebra induces the
existence of a completely positive projection on the Hilbert space, and considered
an approximation property in L2(M) with respect to a completely positive map
when M is an injective factor. In the present note we shall consider the converse
theorem.

We shall use the book of Takesaki [T2] as a reference of the standard results of
operator algebras. We shall use the notion as introduced in [SW] with respect to
matrix-ordered standard forms and their construction.
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Results

Throughout this section we assume that (M,H,H+
n , n ∈ N) is a matrix-ordered

standard form [SW, Chapter 1] of a σ-finite W ∗-algebra M . Let e be a completely
positive projection on H, i.e., en = e ⊗ 1n maps H+

n into H+
n for every n ∈ N

where 1n denotes the identity on the n×n matrices. We set K = eH, Kn = enHn,
K+
n = enH

+
n , n ∈ N.

We need two lemmata to prove the main theorem.

Lemma 1. If (K,K+
n , n ∈ N) is as above, then there exists a von Neumann algebra

N such that (N,K,K+
n , n ∈ N) is a matrix-ordered standard form.

Proof. It is straightforward to see that (K,K+
n , n ∈ N) is a matrix-ordered Hilbert

space with selfdual cones. It suffices by [SW, Theorem 4.3] to prove that any closed
face of each selfdual cone K+

n (n ∈ N) is projectable. Let F be a closed face of K+
n .

The face generated by F in H+
n is denoted by 〈F 〉. We then obtain by [I2, II.1.7

Lemma and II.1.3 Proposition] and [C1, Theorem 4.2] the inclusion

PFK
+
n = enP〈F 〉enK

+
n ⊂ enP〈F 〉H+

n = enPF⊥⊥H
+
n

= enF
⊥⊥ = en〈F 〉 = F = F,

where PF (resp. P〈F 〉) denotes the orthogonal projection of Kn (resp. Hn) onto
the closed subspace generated by F (resp. 〈F 〉).

Lemma 2. Let M, e and N be as above. Assume, in addition, that eξ0 = ξ0 for
some cyclic and separating vector ξ0 in H+ for M . If we put L = M ∩ {e}′, then
L|eH = eM |eH = N .

Proof. It is easy to see that Je = eJ , eJ |K = JK+ , Jnen = enJn and enJn|Kn =
JK+

n
.

We shall first prove that eM |K ⊂ N . Take a derivation δ in D(H+
2 ). We see

from [C1, Lemma 5.3] that e2δe2J2 = J2e2δe2 and if η, ζ ∈ K+
2 and (η, ζ) = 0, then

(e2δe2η, ζ) = (δη, ζ) = 0. This implies that e2δ|K2 belongs to D(K+
2 ). By virtue

of the standard form (M2(M), H2, J2, H
+
2 ) we see from [C1, Theorem 3.4 c)] that

for each element X = [ x 0
0 0 ] in M2(M) there exists Y = [ a bc d ] ∈ M2(N) satisfying

e2(X + J2XJ2)Ξ = (Y + JK+
2
Y JK+

2
)Ξ for all Ξ ∈ K2. By setting Ξ = [ 0 ξ

0 0
] with

ξ ∈ K we have [
0 exξ
0 0

]
=

[
JbJξ (a+ JdJ)ξ

0 cξ

]
,

so that b = c = 0 and exξ = aξ + JdJξ. Moreover, if we set Ξ = [ 0 0
0 ξ ], then

[ 0 0
0 0 ] = [ 0 0

0 (d+JdJ)ξ ]. It follows that exξ = aξ−dξ for all ξ ∈ K, whence eM |K ⊂ N .
We next want to prove that N ⊂ L|K. Take any projection p in N . Since

in general by [C1, Theorem 4.2] the map q → qJqJH+ is an order isomorphism
of the set of all projections of M onto the set of all closed faces of H+, we see
that [ p 0

0 1 ]JK+
2

[ p 0
0 1 ]JK+

2
K+

2 is a closed face of K+
2 , which will be denoted by F , and

PF = [ p 0
0 1 ]JK+

2
[ p 0
0 1 ]JK+

2
. There then exists a projection P = [ a b

b∗ c ] in M2(M) such

that P〈F 〉 = PJ2PJ2. It follows from [I2, II.1.7 Lemma] that PFΞ = e2P〈F 〉Ξ for

all Ξ ∈ K2. By setting Ξ = [ 0 ξ
0 0

] we have

pξ = eaJcJξ(∗)
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for all ξ ∈ K. On the other hand, since e2PF e2 ≤ P〈F 〉 we have for all ξ ∈ K[
0 0
0 ξ

]
=

[
p 0
0 1

]
JK+

2

[
p 0
0 1

]
JK+

2

[
0 0
0 ξ

]
=

[
a b
b∗ c

]
J2

[
a b
b∗ c

]
J2

[
0 0
0 ξ

]
=

[
bJbJξ bJcJξ
cJbJξ cJcJξ

]
.

We then have by [SW, Corollary 3.3] bξ = 0. Since K+ contains by assumption a
cyclic and separating vector for M , we have b = 0. It follows that both a and c
must be projections because P is a projection. Since

ξ = cJcJξ = cξ

for all ξ ∈ K, we have by assumption c = 1. Hence the equality (∗) implies
pξ = eaξ for all ξ ∈ K. We see from [I2, II.1.7 Lemma] that e2P〈F 〉 = P〈F 〉e2, i.e.
[ eaJaJ eaeJaJ e ] = [ aJaJe aeJaJe e ], whence ea = ae. Therefore, for every element x in N there
exists an element y in M commuting with e such that xξ = yξ for all ξ ∈ K.

Consequently, the argument above shows that

L|K ⊂ eM |K ⊂ N ⊂ L|K.

Theorem 3. Let (M,H,H+
n , n ∈ N) be a matrix-ordered standard form of the von

Neumann algebra M , and let e be a completely positive projection on H satisfying
eξ0 = ξ0 for some cyclic and separating vector ξ0 ∈ H+ for M . If L = M ∩ {e}′,
then (L|eH, eH, enH+

n , n ∈ N) is a matrix-ordered standard form. In addition, there
exists a faithful normal conditional expectation ε of M onto L such that ωξ0◦ε = ωξ0 .
Furthermore, we have L|eH = eM |eH.

Proof. This part of the proof is due to Iochum [I1, Theorem 3.1.6]. For any element
x in M there exists by Lemma 2 α(x) in L such that exξ = α(x)ξ for all ξ in K.
α(x) is uniquely determined since eξ0 = ξ0 is a separating vector for M . We then
have for all y in L

(ex∗ξ0, JyJξ0) = (ξ0, xJyJξ0) = (ξ0, exJyJξ0)

= (α(x)∗ξ0, JyJξ0).

Hence ex∗ξ0 = α(x)∗ξ0 because of the density of JLJξ0 in K. It follows that

eSxξ0 = ex∗ξ0 = α(x)∗ξ0 = Sα(x)ξ0 = Sexξ0.

Since Mξ0 is a core set of S, we have eS = Se. Hence ∆ξ0e = e∆ξ0 and Lξ0 is
invariant under ∆it

ξ0
(∀t ∈ R). From the theorem of Takesaki [T1, Theorem] we see

the existence of the conditional expectation ε. This completes the proof.

Note that in general e does not belong to M . As an application of the above
theorem we immediately obtain the following corollary in which we consider a von
Neumann algebra from the point of view of semidiscreteness in the related L2-space.

Corollary 4. Let (M,H,H+
n , n ∈ N) be a matrix-ordered standard form of the von

Neumann algebra M . If there exists an increasing sequence {e(n)} of completely
positive projections of finite rank on H which converges strongly to 1 such that
e(1)ξ0 = ξ0 for some cyclic and separating vector ξ0 ∈ H+ for M , then M is
injective.
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Proof. By assumption we have for all n ∈ N e(n)ξ0 = e(n)e(1)ξ0 = e(1)ξ0 = ξ0.
It follows from Theorem 3 that for each n there exists a finite-dimensional von
Neumann subalgebra Ln of M satisfying Ln|e(n)H = e(n)M |e(n)H. Since Lnξ0 =
e(n)Mξ0 and ξ0 is a separating vector for M , we have Ln ⊂ Ln+1. Thus we have
M = {

⋃
n Ln}−s. So M is injective.

We have many results for injectivity in the theory of operator algebras (cf. for
example, [CE], [C2]). In [S] Schmitt studied the Arveson space, which is a Ba-
nach space having the completely positive extension property with predual being
a certain matrix-ordered Banach space, via several equivalent properties which are
the finite injectivity, the approximative factorization property, the matricial Riesz
interpolation property and the matricial Hahn-Banach property, and gave the char-
acterization of matrix-ordered standard forms of injective W ∗-algebras.
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