The zeros of the first two derivatives of a meromorphic function
HTML articles powered by AMS MathViewer
- by J. K. Langley
- Proc. Amer. Math. Soc. 124 (1996), 2439-2441
- DOI: https://doi.org/10.1090/S0002-9939-96-03350-3
- PDF | Request permission
Abstract:
We prove a theorem which implies the following: if $f$ is meromorphic of finite order in the plane and $f’$ and $f''$ have only finitely many zeros, then $f$ has only finitely many poles.References
- Walter Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. (N.S.) 29 (1993), no. 2, 151–188. MR 1216719, DOI 10.1090/S0273-0979-1993-00432-4
- —, On the zeros of certain homogeneous differential polynomials, Arch. Math. 64 (1995), 199–202.
- W. Bergweiler and A. Eremenko, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana (to appear).
- Alexandre Eremenko, Jim Langley, and John Rossi, On the zeros of meromorphic functions of the form $f(z)=\sum ^\infty _{k=1}a_k/(z-z_k)$, J. Anal. Math. 62 (1994), 271–286. MR 1269209, DOI 10.1007/BF02835958
- A. È. Erëmenko and M. Yu. Lyubich, Dynamical properties of some classes of entire functions, Ann. Inst. Fourier (Grenoble) 42 (1992), no. 4, 989–1020 (English, with English and French summaries). MR 1196102, DOI 10.5802/aif.1318
- Günter Frank, Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen, Math. Z. 149 (1976), no. 1, 29–36 (German). MR 422615, DOI 10.1007/BF01301627
- Günter Frank and Gerd Weissenborn, Rational deficient functions of meromorphic functions, Bull. London Math. Soc. 18 (1986), no. 1, 29–33. MR 841364, DOI 10.1112/blms/18.1.29
- A. A. Gol′dberg, The sum of defects of a meromorphic function and its derivative, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 33 (1980), 37–40, ii (Russian). MR 568011
- W. K. Hayman, Picard values of meromorphic functions and their derivatives, Ann. of Math. (2) 70 (1959), 9–42. MR 110807, DOI 10.2307/1969890
- W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. MR 0164038
- W. K. Hayman, Research problems in function theory, The Athlone Press [University of London], London, 1967. MR 0217268
- Ilpo Laine, Nevanlinna theory and complex differential equations, De Gruyter Studies in Mathematics, vol. 15, Walter de Gruyter & Co., Berlin, 1993. MR 1207139, DOI 10.1515/9783110863147
- J. K. Langley, Proof of a conjecture of Hayman concerning $f$ and $f''$, J. London Math. Soc. (2) 48 (1993), no. 3, 500–514. MR 1241784, DOI 10.1112/jlms/s2-48.3.500
- John Lewis, John Rossi, and Allen Weitsman, On the growth of subharmonic functions along paths, Ark. Mat. 22 (1984), no. 1, 109–119. MR 735882, DOI 10.1007/BF02384375
- Erwin Mues, Über eine Defekt- und Verzweigungsrelation für die Ableitung meromorpher Funktionen, Manuscripta Math. 5 (1971), 275–297 (German, with English summary). MR 294641, DOI 10.1007/BF01443259
- Erwin Mues, Über eine Vermutung von Hayman, Math. Z. 119 (1971), 11–20 (German). MR 276471, DOI 10.1007/BF01110938
- John Rossi, The length of asymptotic paths of harmonic functions, J. London Math. Soc. (2) 30 (1984), no. 1, 73–78. MR 760875, DOI 10.1112/jlms/s2-30.1.73
- Lo Yang, Precise estimate of total deficiency of meromorphic derivatives, J. Analyse Math. 55 (1990), 287–296. MR 1094720, DOI 10.1007/BF02789206
Bibliographic Information
- J. K. Langley
- Affiliation: Department of Mathematics, University of Nottingham, Nottingham, NG7 2RD, England
- MR Author ID: 110110
- Email: jkl@maths.nott.ac.uk
- Received by editor(s): February 20, 1995
- Communicated by: Albert Baernstein II
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2439-2441
- MSC (1991): Primary 30D35
- DOI: https://doi.org/10.1090/S0002-9939-96-03350-3
- MathSciNet review: 1327022