## Extremal problems in Minkowski space related to minimal networks

HTML articles powered by AMS MathViewer

- by K. J. Swanepoel PDF
- Proc. Amer. Math. Soc.
**124**(1996), 2513-2518 Request permission

## Abstract:

We solve the following problem of Z. Füredi, J. C. Lagarias and F. Morgan (1991): Is there an upper-bound polynomial in $n$ for the largest cardinality of a set $S$ of unit vectors in an $n$-dimensional Minkowski space (or Banach space) such that the sum of any subset has norm less than 1? We prove that $|S|\leq 2n$ and that equality holds iff the space is linearly isometric to $\ell ^{n}_{\infty }$, the space with an $n$-cube as unit ball. We also remark on similar questions they raised that arose out of the study of singularities in length-minimizing networks in Minkowski spaces.## References

- M. W. Bern and R. L. Graham,
*The shortest-network problem*, Scientific American (January 1989), 66–71. - Yu. D. Burago and V. A. Zalgaller,
*Geometric inequalities*, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988. Translated from the Russian by A. B. Sosinskiĭ; Springer Series in Soviet Mathematics. MR**936419**, DOI 10.1007/978-3-662-07441-1 - J. A. Clarkson,
*Uniformly convex spaces,*Trans. Amer. Math. Soc.**40**(1936), 396–414. - Sergio Sispanov,
*Generalización del teorema de Laguerre*, Bol. Mat.**12**(1939), 113–117 (Spanish). MR**3** - Z. Füredi, J. C. Lagarias, and F. Morgan,
*Singularities of minimal surfaces and networks and related extremal problems in Minkowski space*, Discrete and computational geometry (New Brunswick, NJ, 1989/1990) DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc., Providence, RI, 1991, pp. 95–109. MR**1143291**, DOI 10.1090/dimacs/006/06 - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Gary Lawlor and Frank Morgan,
*Paired calibrations applied to soap films, immiscible fluids, and surfaces or networks minimizing other norms*, Pacific J. Math.**166**(1994), no. 1, 55–83. MR**1306034**, DOI 10.2140/pjm.1994.166.55 - Frank Morgan,
*Minimal surfaces, crystals, shortest networks, and undergraduate research*, Math. Intelligencer**14**(1992), no. 3, 37–44. MR**1184317**, DOI 10.1007/BF03025868 - C. M. Petty,
*Equilateral sets in Minkowski spaces*, Proc. Amer. Math. Soc.**29**(1971), 369–374. MR**275294**, DOI 10.1090/S0002-9939-1971-0275294-8 - Albrecht Pietsch,
*Operator ideals*, Mathematische Monographien [Mathematical Monographs], vol. 16, VEB Deutscher Verlag der Wissenschaften, Berlin, 1978. MR**519680** - J. H. van Lint and R. M. Wilson,
*A course in combinatorics*, Cambridge University Press, Cambridge, 1992. MR**1207813**

## Additional Information

**K. J. Swanepoel**- Affiliation: Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa
- Email: konrad@friedrichs.up.ac.za
- Received by editor(s): February 21, 1995
- Communicated by: Peter Li
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 2513-2518 - MSC (1991): Primary 52A40, 52A21, 49F10
- DOI: https://doi.org/10.1090/S0002-9939-96-03370-9
- MathSciNet review: 1327047