Inequalities for the Novikov-Shubin invariants
HTML articles powered by AMS MathViewer
- by Varghese Mathai
- Proc. Amer. Math. Soc. 124 (1996), 2585-2588
- DOI: https://doi.org/10.1090/S0002-9939-96-03406-5
- PDF | Request permission
Abstract:
In this paper, we prove that the Novikov-Shubin invariants satisfy a sequence of inequalities and deduce some useful consequences of this result.References
- M. F. Atiyah, Elliptic operators, discrete groups and von Neumann algebras, Colloque “Analyse et Topologie” en l’Honneur de Henri Cartan (Orsay, 1974) Astérisque, No. 32-33, Soc. Math. France, Paris, 1976, pp. 43–72. MR 0420729
- Alan L. Carey and Varghese Mathai, $L^2$-torsion invariants, J. Funct. Anal. 110 (1992), no. 2, 377–409. MR 1194991, DOI 10.1016/0022-1236(92)90036-I
- A. V. Efremov, Cell decompositions and the Novikov-Shubin invariants, Uspekhi Mat. Nauk 46 (1991), no. 3(279), 189–190 (Russian); English transl., Russian Math. Surveys 46 (1991), no. 3, 219–220. MR 1134099, DOI 10.1070/RM1991v046n03ABEH002800
- D. V. Efremov and M. A. Shubin, Spectrum distribution function and variational principle for automorphic operators on hyperbolic space, Séminaire sur les Équations aux Dérivées Partielles, 1988–1989, École Polytech., Palaiseau, 1989, pp. Exp. No. VIII, 19. MR 1032284
- M. Gromov and M. A. Shubin, von Neumann spectra near zero, Geom. Funct. Anal. 1 (1991), no. 4, 375–404. MR 1132295, DOI 10.1007/BF01895640
- John Lott, Heat kernels on covering spaces and topological invariants, J. Differential Geom. 35 (1992), no. 2, 471–510. MR 1158345
- J. Lott and W. Lück, $L^{2}$ topological invariants of 3-manifolds, (to appear in Inven. Math.).
- Wolfgang Lück and Mel Rothenberg, Reidemeister torsion and the $K$-theory of von Neumann algebras, $K$-Theory 5 (1991), no. 3, 213–264. MR 1162441, DOI 10.1007/BF00533588
- Varghese Mathai, $L^2$-analytic torsion, J. Funct. Anal. 107 (1992), no. 2, 369–386. MR 1172031, DOI 10.1016/0022-1236(92)90114-X
- V. Mathai, $L^2$ analytic torsion and locally symmetric spaces, preprint 1991.
- V. Mathai and S. Weinberger, Shifted $L^2$ Invariants and Amenable manifolds, preprint 1994.
- John Roe, Elliptic operators, topology and asymptotic methods, Pitman Research Notes in Mathematics Series, vol. 179, Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York, 1988. MR 960889
Bibliographic Information
- Varghese Mathai
- Affiliation: Department of Pure Mathematics, University of Adelaide, Adelaide, South Australia, Australia
- MR Author ID: 231404
- Email: vmathai@spam.maths.adelaide.edu.au
- Received by editor(s): February 15, 1995
- Communicated by: Peter Li
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2585-2588
- MSC (1991): Primary 58G11, 58G18, 58G25
- DOI: https://doi.org/10.1090/S0002-9939-96-03406-5
- MathSciNet review: 1328361