Nonresonance problems for differential inclusions in separable Banach spaces
HTML articles powered by AMS MathViewer
- by Zouhua Ding and Athanassios G. Kartsatos
- Proc. Amer. Math. Soc. 124 (1996), 2357-2365
- DOI: https://doi.org/10.1090/S0002-9939-96-03439-9
- PDF | Request permission
Abstract:
Let $X$ be a real separable Banach space. The boundary value problem \begin{equation*} \begin {split} &x’ \in A(t)x+F(t,x),~t\in \mathcal {R}_+,\\ &Ux = a, \end{split} \tag *{(B)} \end{equation*} is studied on the infinite interval $R_+=[0,\infty ).$ Here, the closed and densely defined linear operator $A(t):X\supset D(A)\to X,~t\in \mathcal {R}_+,$ generates an evolution operator $W(t,s).$ The function $F:\mathcal {R}_+\times X\to 2^X$ is measurable in its first variable, upper semicontinuous in its second and has weakly compact and convex values. Either $F$ is bounded and $W(t,s)$ is compact for $t > s,$ or $F$ is compact and $W(t,s)$ is equicontinuous. The mapping $U:C_b(\mathcal {R}_+,X)\to X$ is a bounded linear operator and $a\in X$ is fixed. The nonresonance problem is solved by using Ma’s fixed point theorem along with a recent result of Przeradzki which characterizes the compact sets in $C_b(\mathcal {R}_+,X).$References
- Giuseppe Anichini, Nonlinear problems for systems of differential equations, Nonlinear Anal. 1 (1976/77), no. 6, 691–699. MR 592963, DOI 10.1016/0362-546X(77)90027-X
- Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330, DOI 10.1007/978-3-642-69512-4
- Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
- C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53–72. MR 367142, DOI 10.4064/fm-87-1-53-72
- Shou Chuan Hu and Nikolaos S. Papageorgiou, On the existence of periodic solutions for a class of nonlinear evolution inclusions, Boll. Un. Mat. Ital. B (7) 7 (1993), no. 3, 591–605 (English, with Italian summary). MR 1244409
- Athanassios G. Kartsatos, The Leray-Schauder theorem and the existence of solutions to boundary value problems on infinite intervals, Indiana Univ. Math. J. 23 (1973/74), 1021–1029. MR 340697, DOI 10.1512/iumj.1974.23.23083
- Athanassios G. Kartsatos, Nonzero solutions to boundary value problems for nonlinear systems, Pacific J. Math. 53 (1974), 425–433. MR 377164, DOI 10.2140/pjm.1974.53.425
- Athanassios G. Kartsatos, Locally invertible operators and existence problems in differential systems, Tohoku Math. J. (2) 28 (1976), no. 2, 167–176. MR 430385, DOI 10.2748/tmj/1178240831
- Athanassios G. Kartsatos, Boundary value problems for abstract evolution equations, Nonlinear Anal. 3 (1979), no. 4, 547–554. MR 537341, DOI 10.1016/0362-546X(79)90072-5
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Athanassios G. Kartsatos and Ki-Yeon Shin, Solvability of functional evolutions via compactness methods in general Banach spaces, Nonlinear Anal. 21 (1993), no. 7, 517–535. MR 1241826, DOI 10.1016/0362-546X(93)90008-G
- Tsoy-wo Ma, Topological degrees of set-valued compact fields in locally convex spaces, Dissertationes Math. (Rozprawy Mat.) 92 (1972), 43. MR 309103
- N. S. Papageorgiou, A stability result for differential inclusions in Banach spaces, J. Math. Anal. Appl. 118 (1986), 232–246
- Nikolaos S. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carolin. 29 (1988), no. 2, 355–363. MR 957404
- N. S. Papageorgiou, Boundary value problems and periodic solutions for semilinear evolution inclusions, Comment. Math. Univ. Carolinae 35 (1994), 325–336.
- B. Przeradzki, The existence of bounded solutions for differential equations in Hilbert spaces, Ann. Polon. Math. 56 (1992), no. 2, 103–121. MR 1159982, DOI 10.4064/ap-56-2-103-121
- James R. Ward Jr., Boundary value problems for differential equations in Banach space, J. Math. Anal. Appl. 70 (1979), no. 2, 589–598. MR 543596, DOI 10.1016/0022-247X(79)90067-2
- Pietro Zecca and Pier Luigi Zezza, Nonlinear boundary value problems in Banach spaces for multivalue differential equations on a noncompact interval, Nonlinear Anal. 3 (1979), no. 3, 347–352. MR 532895, DOI 10.1016/0362-546X(79)90024-5
Bibliographic Information
- Zouhua Ding
- Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
- Email: ding@chuma.usf.edu
- Athanassios G. Kartsatos
- Affiliation: Department of Mathematics, University of South Florida, Tampa, Florida 33620-5700
- Email: hermes@gauss.math.usf.edu
- Received by editor(s): December 16, 1994
- Communicated by: Hal L. Smith
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2357-2365
- MSC (1991): Primary 34A60
- DOI: https://doi.org/10.1090/S0002-9939-96-03439-9
- MathSciNet review: 1340383