Baire spaces and hyperspace topologies
HTML articles powered by AMS MathViewer
- by László Zsilinszky
- Proc. Amer. Math. Soc. 124 (1996), 2575-2584
- DOI: https://doi.org/10.1090/S0002-9939-96-03528-9
- PDF | Request permission
Abstract:
Sufficient conditions for abstract (proximal) hit-and-miss hyperspace topologies and the Wijsman hyperspace topology, respectively, are given to be Baire spaces, thus extending results of McCoy, Beer, and Costantini. Further the quasi-regularity of (proximal) hit-and-miss topologies is investigated.References
- J. M. Aarts and D. J. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. (Rozprawy Mat.) 116 (1974), 48. MR 380745
- Gerald Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc. 113 (1991), no. 4, 1123–1133. MR 1065940, DOI 10.1090/S0002-9939-1991-1065940-6
- Hidegorô Nakano, Über Abelsche Ringe von Projektionsoperatoren, Proc. Phys.-Math. Soc. Japan (3) 21 (1939), 357–375 (German). MR 94
- Gerald Beer, Alojzy Lechicki, Sandro Levi, and Somashekhar Naimpally, Distance functionals and suprema of hyperspace topologies, Ann. Mat. Pura Appl. (4) 162 (1992), 367–381. MR 1199663, DOI 10.1007/BF01760016
- Gerald Beer and Robert K. Tamaki, On hit-and-miss hyperspace topologies, Comment. Math. Univ. Carolin. 34 (1993), no. 4, 717–728. MR 1263801
- Gerald Beer and Robert Tamaki, The infimal value functional and the uniformization of hit-and-miss hyperspace topologies, Proc. Amer. Math. Soc. 122 (1994), no. 2, 601–612. MR 1264804, DOI 10.1090/S0002-9939-1994-1264804-5
- C.Costantini, Every Wijsman topology relative to a Polish space is Polish, Proc. Amer. Math. Soc. 123 (1995), 2569–2574.
- C.Costantini-S.Levi-J.Pelant, Infima of hyperspace topologies, Mathematica 42 (1995), 67–86.
- A. S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly 68 (1961), 886–893. MR 214017, DOI 10.2307/2311686
- G.Di Maio-Ľ.Holá, On hit-and-miss topologies, preprint.
- Giuseppe Di Maio and Somashekhar Naimpally, Comparison of hypertopologies, Rend. Istit. Mat. Univ. Trieste 22 (1990), no. 1-2, 140–161 (1992) (English, with English and Italian summaries). MR 1210485
- M. L. Balinski and Eli Hellerman (eds.), Computational practice in mathematical programming, Mathematical Programming Studies, Vol. 4, North-Holland Publishing Co., Amsterdam, 1975. MR 0381682
- W. G. Fleissner and K. Kunen, Barely Baire spaces, Fund. Math. 101 (1978), no. 3, 229–240. MR 521125, DOI 10.4064/fm-101-3-229-240
- Sebastiano Francaviglia, Alojzy Lechicki, and Sandro Levi, Quasiuniformization of hyperspaces and convergence of nets of semicontinuous multifunctions, J. Math. Anal. Appl. 112 (1985), no. 2, 347–370. MR 813603, DOI 10.1016/0022-247X(85)90246-X
- Ľ.Holá, When Wijsman topology is the weak topology generated by gap functionals determined by closed proper balls, preprint
- Ľ.Holá-R.Lucchetti, Equivalence among hypertopologies, Set-Valued Analysis 3 (1995), 339–350.
- R. C. Haworth and R. A. McCoy, Baire spaces, Dissertationes Math. (Rozprawy Mat.) 141 (1977), 73. MR 431104
- J.L.Kelley, General Topology, Springer-Verlag, New York, 1984.
- Erwin Klein and Anthony C. Thompson, Theory of correspondences, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1984. Including applications to mathematical economics; A Wiley-Interscience Publication. MR 752692
- Robert A. McCoy, Baire spaces and hyperspaces, Pacific J. Math. 58 (1975), no. 1, 133–142. MR 410689, DOI 10.2140/pjm.1975.58.133
- R. A. McCoy and I. Ntantu, Properties of $C(X)$ with the epi-topology, Boll. Un. Mat. Ital. B (7) 6 (1992), no. 3, 507–532 (English, with Italian summary). MR 1191951
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
- Tibor Neubrunn, A note on mappings of Baire spaces, Math. Slovaca 27 (1977), no. 2, 173–176 (English, with Russian summary). MR 454910
- John C. Oxtoby, Cartesian products of Baire spaces, Fund. Math. 49 (1960/61), 157–166. MR 140638, DOI 10.4064/fm-49-2-157-166
- H.Poppe, Eine Bemerkung über Trennungsaxiome in Räumen von abgeschlossenen Teilmengen topologisher Räume, Arch. Math. 16 (1965), 197-199.
- Harry Poppe, Einige Bemerkungen über den Raum der abgeschlossenen Mengen, Fund. Math. 59 (1966), 159–169 (German). MR 198415, DOI 10.4064/fm-59-2-159-169
- W.Vervaat, Random upper semicontinuous functions and extremal processes, Centre for Mathematics and Computer Science, Report MS-R8801, Amsterdam, 1988.
- H. E. White Jr., Topological spaces that are $\alpha$-favorable for a player with perfect information, Proc. Amer. Math. Soc. 50 (1975), 477–482. MR 367941, DOI 10.1090/S0002-9939-1975-0367941-0
- L.Zsilinszky, On separation axioms in hyperspaces, Rend. Circ. Mat. Palermo 45 (1996), 75–83.
Bibliographic Information
- László Zsilinszky
- Affiliation: Department of Mathematics, University of Ostrava, Bráfova 7, 701 03 Ostrava, Czech Republic
- Address at time of publication: Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
- MR Author ID: 331579
- Email: zsilin@oudec.osu.cz, zsilinsz@math.sc.edu
- Received by editor(s): February 1, 1995
- Communicated by: Franklin D. Tall
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2575-2584
- MSC (1991): Primary 54B20; Secondary 54E52
- DOI: https://doi.org/10.1090/S0002-9939-96-03528-9
- MathSciNet review: 1343733