Asymptotic behaviour of ground states
HTML articles powered by AMS MathViewer
- by Josephus Hulshof and Robertus C. A. M. van der Vorst
- Proc. Amer. Math. Soc. 124 (1996), 2423-2431
- DOI: https://doi.org/10.1090/S0002-9939-96-03669-6
- PDF | Request permission
Abstract:
We derive the asymptotic behaviour of the ground states of a system of two coupled semilinear Poisson equations with a strongly indefinite variational structure in the critical Sobolev growth case.References
- Haïm Brézis and Louis Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), no. 4, 437–477. MR 709644, DOI 10.1002/cpa.3160360405
- Jack Carr, Applications of centre manifold theory, Applied Mathematical Sciences, vol. 35, Springer-Verlag, New York-Berlin, 1981. MR 635782, DOI 10.1007/978-1-4612-5929-9
- Shui Nee Chow and Jack K. Hale, Methods of bifurcation theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 251, Springer-Verlag, New York-Berlin, 1982. MR 660633, DOI 10.1007/978-1-4613-8159-4
- Josephus Hulshof, Similarity solutions of the porous medium equation with sign changes, J. Math. Anal. Appl. 157 (1991), no. 1, 75–111. MR 1109445, DOI 10.1016/0022-247X(91)90138-P
- Hulshof, J., Similarity solutions of the $k-\epsilon$ model for turbulence, Report W93-11, Leiden University, 1993. (To appear as Similarity solutions of Barenblatt’s model for turbulence, SIAM J. Math. Anal.)
- Hulshof, J., A local analysis of similarity solutions of the thin film equation, Report W94-22, Leiden University, 1994.
- Hulshof, J, E. Mitidieri and R.C.A.M. van der Vorst, Strongly indefinite systems with critical Sobolev exponents, Report W95-15, Leiden University, 1995.
- Hulshof, J. and R.C.A.M. van der Vorst, Positive solutions of the equation $\Delta u+u^p=0$ on a bounded domain, course notes, Report W93-06, Leiden University, 1993.
- Josephus Hulshof and Robertus van der Vorst, Differential systems with strongly indefinite variational structure, J. Funct. Anal. 114 (1993), no. 1, 32–58. MR 1220982, DOI 10.1006/jfan.1993.1062
- Huzoor H. Khan, A note on a theorem of Izumi, Comm. Fac. Sci. Univ. Ankara Sér. $A_1$ Math. 31 (1982), no. 14, 123–127 (1984). MR 794035
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Enzo Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18 (1993), no. 1-2, 125–151. MR 1211727, DOI 10.1080/03605309308820923
- R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2\cap H^1_0(\Omega )$ into $L^{2N/(N-4)}(\Omega )$, Differential Integral Equations 6 (1993), no. 2, 259–276. MR 1195382
- Xu Jia Wang, Sharp constant in a Sobolev inequality, Nonlinear Anal. 20 (1993), no. 3, 261–268. MR 1202203, DOI 10.1016/0362-546X(93)90162-L
- Felmer, P. and D. G. de Figueiredo, On super-quadratic elliptic systems, Trans. A. M. S. 343 (1994), 99–116.
Bibliographic Information
- Josephus Hulshof
- Affiliation: Mathematical Department of the Leiden University, Niels Bohrweg 1 2333 CA Leiden, The Netherlands
- Email: hulshof@wi.leidenuniv.nl
- Robertus C. A. M. van der Vorst
- Affiliation: Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology, Atlanta, Georgia 30308-0190
- Email: rvander@math.gatech.edu
- Received by editor(s): February 16, 1995
- Additional Notes: We gratefully acknowledge the support by N.W.O., the Dutch Organisation for Scientific Research, and Enzo Mitidieri for his encouragement.
- Communicated by: Jeffrey Rauch
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2423-2431
- MSC (1991): Primary 35J55; Secondary 34C37
- DOI: https://doi.org/10.1090/S0002-9939-96-03669-6
- MathSciNet review: 1363170