EQUIVALENT CONDITIONS INVOLVING COMMON FIXED POINTS FOR MAPS ON THE UNIT INTERVAL

JACEK R. JACHYMSKI

(Communicated by James E. West)

Abstract. Let g be a continuous self-map of the unit interval I. Equivalent conditions are given to ensure that g has a common fixed point with every continuous map $f : I \to I$ that commutes with g on a suitable subset of I. This extends a recent result of Gerald Jungck.

1. Introduction

Let f and g be two commuting continuous self-maps of I, the unit interval. It is known that f and g need not have then a common fixed point (for counterexamples, see, e.g., [6]). However, if one of the maps, say g, has appropriate additional properties then f and g possess a common fixed point. In particular, W. Boyce [1, Corollary 5] has shown that it suffices to assume the family $\{g^n : n \in \mathbb{N}\}$, iterates of g, is equicontinuous on I. This result has been extended by J. Cano [2, Theorems 1 and 2] who has required that either g has a closed interval for its set of fixed points $F(g)$, or $F(g)$ coincides with $P(g)$, the set of all periodic points of g. It is worth underlining here that Corollary 5 [1] as well as Theorem 1 [2] give only sufficient conditions for the existence of a common fixed point of f and g.

On the other hand, recently, Gerald Jungck [7, Theorem 3.6] established the following interesting equivalence: a continuous self-map g of I has a common fixed point with every continuous map $f : I \to I$ that nontrivially commutes with g on the set of coincidence points of f and g if and only if $P(g) = F(g)$.

Our purpose here is to give other necessary and sufficient criteria of this type (see Theorems 1, 2 and 3). We also obtain a variant of Jungck’s Theorem in more abstract settings as compact and convex subsets of a normed linear space (see Proposition 1).

2. Equivalent conditions

Following Boyce [1] and Cano [2] we define the classes of maps:

$$B \triangleq \{g : I \to I \mid \{g^n : n \in \mathbb{N}\} \text{ is equicontinuous on } I\},$$

$$C_1 \triangleq \{g : I \to I \mid g \text{ is continuous and } F(g) \text{ is a closed interval}\},$$

$$C_2 \triangleq \{g : I \to I \mid g \text{ is continuous and } F(g) = P(g)\}.$$
Let f and g be continuous self-maps of I. Then we have:

1. If f and g commute on I and $g \in B$ then $F(f) \cap F(g) \neq \emptyset$ [1, Corollary 5].
2. If f and g commute on I and $g \in C_1 \cup C_2$ then $F(f) \cap F(g) \neq \emptyset$; moreover, $B \subseteq C_1$. If $g \in B$ and $F(g)$ is not a singleton then $g \in C_2$ [2, Theorems 1 and 2].

Next, by [7, Theorem 3.6], $g \in C_2$ if and only if $F(f) \cap F(g) \neq \emptyset$ for every continuous map $f : I \to I$ such that the set of coincidence points of f and g is non-empty, and f and g commute on it.

Inspired by the last result we give other characterizations of the classes C_1, C_2 and B.

Theorem 1. Let g be a continuous self-map of I. Then the following conditions are equivalent:

1. $g \in C_1$;
2. the family $\{g^n : n \in N\}$ is equicontinuous on $F(g)$, or $F(g)$ is a singleton;
3. g has a common fixed point with every continuous map $f : I \to I$ that commutes with g on $F(g)$.

Proof. (i) \Rightarrow (ii). If $F(g)$ is a singleton, we are done. So suppose $F(g) = [a, b]$ and $a < b$. Obviously, it suffices to show that $\{g^n : n \in N\}$ is equicontinuous at the points a and b. And because of symmetry, we consider only the point a. The case when $a = 0$ is trivial. So suppose $a > 0$. Fix an $\epsilon \in (0, b - a)$. By the continuity, there exists a $\delta \in (0, \epsilon)$ such that

\[a - \epsilon < g(x) < a + \epsilon \text{ for all } x \in (a - \delta, a) \cap I. \]

We shall apply induction on n to show that, for all $n \in N$,

\[a - \epsilon < g^n(x) < a + \epsilon \text{ for all } x \in (a - \delta, a) \cap I. \]

By (1), (2) holds if $n = 1$. Assuming (2) holds for $n = 1, 2, \ldots, k$, we shall prove it for $k + 1$. Fix an $x \in (a - \delta, a) \cap I$. If $a \leq g^k(x) < a + \epsilon$ then $g^{k+1}(x) \in F(g)$ since $a + \epsilon < b$ so (2) is fulfilled for $n = k + 1$. Assume now that $g^k(x) < a$. Then $g^i(x) < a$ for $i = 1, 2, \ldots, k$; for otherwise, by induction hypothesis, $a \leq g^i(x) < a + \epsilon$ for some i, $1 \leq i \leq k$ so $g^i(x) \in F(g)$, which implies $g^{k+1}(x) \in F(g)$ and hence $g^{k+1}(x) \geq a$, a contradiction. Since $F(g) = [a, b]$, we have $g(a) > y$ for all $y \in [0, a)$. In particular, $g^i(x) > g^{i-1}(x)$ for $i = 1, 2, \ldots, k$, which implies $g^k(x) > x$. Since $x > a - \delta$ and $g^k(x) < a$, we obtain that $g^k(x) \in (a - \delta, a) \cap I$. By (1), $a - \epsilon < g^{k+1}(x) < a + \epsilon$, which completes the induction.

Since $\delta < \epsilon < b - a$, we have $g^n(x) = x$ for $x \in [a, a + \delta)$ and $n \in N$. So finally, $a - \epsilon < g^n(x) < a + \epsilon$ for all $x \in (a - \delta, a + \delta)$ and $n \in N$. This proves $\{g^n : n \in N\}$ is equicontinuous at the point a.

(ii) \Rightarrow (i). This implication follows from the proof of Cano’s Theorem 1 [2].

(i) \Rightarrow (iii). If f commutes with g on $F(g)$ then $F(f)$ is f-invariant so $f|_{F(g)}$ has a fixed point since $F(g)$ is a closed interval.

(iii) \Rightarrow (i). Suppose $F(g)$ is not an interval. There exist $a, b \in F(g)$, $a < b$, such that $(a, b) \cap F(g) = \emptyset$. Define the map $f : f(x) = b$ for $x \in [0, a]$, $f(x) = -x + a + b$ for $x \in (a, b)$, and $f(x) = a$ for $x \in [b, 1]$. Then f is continuous and for $x \in F(g)$, either $x \in [0, a]$ and then $f(g(x)) = g(f(x)) = b$, or $x \in [b, 1]$ and then $f(g(x)) = g(f(x)) = a$. Thus f and g commute on $F(g)$, but $F(f) \cap F(g) = \emptyset$, which contradicts (iii).
The following example shows that we cannot omit the condition “$F(g)$ is a singleton” in (ii) of Theorem 1.

Example 1. Define the map g on I as follows:

$$g(x) = \begin{cases} 1 & \text{for } x \in [0, \frac{1}{4}], \\ -2x + \frac{3}{2} & \text{for } x \in \left(\frac{1}{4}, \frac{3}{4}\right), \\ 0 & \text{for } x \in \left[\frac{3}{4}, 1\right]. \end{cases}$$

Clearly, $F(g) = \{\frac{1}{2}\}$ and $g \in C_1$. However, it is easy to verify that the family $\{g^n : n \in \mathbb{N}\}$ is not equicontinuous at the point $\frac{1}{2}$.

Theorem 2. Let g be a continuous self-map of I. Then the following conditions are equivalent:

(i) $g \in C_2$;

(ii) the sequence $\{g^n\}_{n=1}^{\infty}$ is pointwise convergent on I;

(iii) g has a common fixed point with every continuous map $f : I \to I$ that commutes with g on $F(f)$.

Proof. That (i) implies (ii) was proved by S. C. Chu and R. D. Moyer [3, Theorem 1] and, independently, by E. M. Coven and G. A. Hedlund [4, Theorem 2]. To prove (ii) implies (iii) fix an $x \in F(f)$. Since, by the commutativity, $F(f)$ is g-invariant we have $g^n(x) \in F(f)$ for $n \in \mathbb{N}$. By (ii), $\{g^n(x)\}_{n=1}^{\infty}$ converges to some $z \in I$. Then $z \in F(f) \cap F(g)$ since $F(f)$ is closed and g is continuous. To prove (iii) implies (i) it suffices to show that for any non-empty closed g-invariant set $C \subseteq I$, $C \cap F(g) \neq \emptyset$ and then apply [3, Theorem 1]. Fix such a set C. There exists a continuous map $f : I \to I$ such that $F(f) = C$. If $x \in F(f)$ then $g(f(x)) = g(x)$ and $f(g(x)) = g(x)$ since C is g-invariant. Thus f and g commute on $F(f)$ so, by (iii), $F(f) \cap F(g) \neq \emptyset$, i.e., $C \cap F(g) \neq \emptyset$.

Remark 1. The sufficiency part of Jungck’s Theorem 3.6 [7] is easily subsumed by Theorem 2: if f and g commute at their coincidence points, $P(g) = F(g)$ and $f(a) = g(a)$ then $f^n(a) = g^n(a)$ for $n \in \mathbb{N}$. By Theorem 2 ((i) ⇒ (ii)), $\{g^n(a)\}_{n=1}^{\infty}$ is convergent to some b. Then, by the continuity, b is a common fixed point of f and g.

Before stating the next theorem let us notice that a common fixed point theorem for a family of commuting maps would be trivial if we assumed one of them had a unique fixed point. This justifies a use of the assumption “$F(g)$ is not a singleton” in Theorem 3 below.

Theorem 3. Let g be a continuous self-map of I such that $F(g)$ is not a singleton. Then the following conditions are equivalent:

(i) $g \in B$;

(ii) the sequence $\{g^n\}_{n=1}^{\infty}$ is uniformly convergent on I;

(iii) g has a common fixed point with every continuous map $f : I \to I$ that commutes with g either on $F(f)$, or on $F(g)$.

Proof. (i) ⇒ (ii). If $g \in B$ and $F(g)$ is not a singleton then, by [2, Theorem 2], $g \in C_2$. By Theorem 2, $\{g^n\}_{n=1}^{\infty}$ is pointwise convergent on I which implies (ii), since $\{g^n : n \in \mathbb{N}\}$ is equicontinuous.

(ii) ⇒ (iii). This implication easily follows from Theorems 1 and 2.

(iii) ⇒ (i). By Theorem 2, $\{g^n\}_{n=1}^{\infty}$ is pointwise convergent, which implies $F(g) = F(g^2)$. On the other hand, by Theorem 1, $F(g)$ is an interval. Therefore, $F(g^n)$ is
an interval, so by [1, Lemma 1 and Theorem 5], \(\{g^n : n \in \mathbb{N}\} \) is equicontinuous, i.e., \(g \in B \).

Remark 2. The condition that \(F(g) \) is not a singleton is necessary in Theorem 3 (consider the map \(g(x) = 1 - x \) \(x \in I \)), for which (i) holds but (ii) is not fulfilled. Further, Example 1 shows that one cannot modify Theorem 3 similarly changes of the text of this paper.

Remark 3. It follows from [3, Theorem 1] that in case when \(A = I \), the conditions (i) of Proposition 1 and (i) of Theorem 2 are equivalent.

Proof of Proposition 1. (i) \(\Rightarrow \) (ii). Let a continuous map \(f : A \to A \) commute with \(g \) on \(F(f) \). Then \(F(f) \) is \(g \)-invariant and closed. Moreover, by Schauder’s Fixed Point Theorem, \(F(f) \) is non-empty. So by (i), we get \(F(f) \cap F(g) \neq \emptyset \).

(ii) \(\Rightarrow \) (i). Let \(C \) be a non-empty closed \(g \)-invariant subset of \(A \). We show that \(C \cap F(g) \neq \emptyset \). The case when \(C = A \) is trivial. So assume \(C \neq A \) and fix a point \(a \in A \setminus C \). There exists a continuous function \(\phi : A \to I \) such that \(\phi^{-1}(0) = a \) and \(\phi^{-1}(1) = C \) (see, e.g., [5, Theorem 1.5.19, p.69]). Assume further that \(0 \in C \). Define a map \(f \) by \(f(x) = \phi(x)x \) for \(x \in A \). Then \(f(A) \subseteq A \) by convexity, and \(F(f) = C \), since \(x = f(x) \) if \(x = 0 \) or \(\phi(x) = 1 \). For \(x \in C \), \(g(f(x)) = g(x) \) since \(f(x) = x \), and \(f(g(x)) = g(x) \) since \(C \) is \(g \)-invariant and \(F(f) = C \). Thus \(f \) and \(g \) commute on \(F(f) \). By (ii), \(F(f) \cap F(g) \neq \emptyset \), i.e., \(C \cap F(g) \neq \emptyset \). In case when \(0 \notin C \), fix a point \(c \in C \), consider the sets \(A' = A - c \), \(C' = C - c \), and repeat the above argument to deduce there exists a continuous map \(f' : A' \to A' \) such that \(F(f') = C' \). Next, define a map \(f \) as \(f(x) = f'(x - c) + c \) for \(x \in A \) and apply (ii) for such a map \(f \) to obtain that \(C \cap F(g) \neq \emptyset \).

Acknowledgement

The author is grateful to the referee for suggesting some stylistic and expositional changes of the text of this paper.

References

Institute of Mathematics, Technical University of Łódź, Żwirki 36, 90-924 Łódź, Poland

E-mail address: jachymski@lodz1.p.lodz.pl