A note on Miller’s theorem about maps out of classifying spaces
HTML articles powered by AMS MathViewer
- by C. A. McGibbon
- Proc. Amer. Math. Soc. 124 (1996), 3241-3245
- DOI: https://doi.org/10.1090/S0002-9939-96-03407-7
- PDF | Request permission
Abstract:
Let $X$ be a connected infinite loop space whose fundamental group is a torsion group and let $Y$ be a finite nilpotent $CW$-complex. The main result of this paper is that the space of based maps from $X$ to the profinite completion of $Y$ is weakly contractible.References
- A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics, Vol. 304, Springer-Verlag, Berlin-New York, 1972. MR 0365573, DOI 10.1007/978-3-540-38117-4
- Frederick R. Cohen, Thomas J. Lada, and J. Peter May, The homology of iterated loop spaces, Lecture Notes in Mathematics, Vol. 533, Springer-Verlag, Berlin-New York, 1976. MR 0436146, DOI 10.1007/BFb0080464
- Eric M. Friedlander and Guido Mislin, Locally finite approximation of Lie groups. I, Invent. Math. 83 (1986), no. 3, 425–436. MR 827361, DOI 10.1007/BF01394416
- Brayton Gray and C. A. McGibbon, Universal phantom maps, Topology 32 (1993), no. 2, 371–394. MR 1217076, DOI 10.1016/0040-9383(93)90027-S
- C. A. McGibbon, Phantom maps, a chapter in The Handbook of Algebraic Topology, I. M. James, ed., North Holland, 1995.
- Haynes Miller, The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2) 120 (1984), no. 1, 39–87. MR 750716, DOI 10.2307/2007071
- Stewart B. Priddy, On $\Omega ^{\infty }S^{\infty }$ and the infinite symmetric group, Algebraic topology (Proc. Sympos. Pure Math., Vol. XXII, Univ. Wisconsin, Madison, Wis., 1970) Amer. Math. Soc., Providence, R.I., 1971, pp. 217–220. MR 0358767
- Dennis Sullivan, Genetics of homotopy theory and the Adams conjecture, Ann. of Math. (2) 100 (1974), 1–79. MR 442930, DOI 10.2307/1970841
- A. Zabrodsky, On phantom maps and a theorem of H. Miller, Israel J. Math. 58 (1987), no. 2, 129–143. MR 901174, DOI 10.1007/BF02785672
Bibliographic Information
- C. A. McGibbon
- Affiliation: Department of Mathematics, Wayne State University, Detroit, Michigan 48202
- Email: mcgibbon@math.wayne.edu
- Received by editor(s): January 10, 1995
- Received by editor(s) in revised form: April 4, 1995
- Communicated by: Thomas Goodwillie
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3241-3245
- MSC (1991): Primary 55R35, 55P47, 55S37
- DOI: https://doi.org/10.1090/S0002-9939-96-03407-7
- MathSciNet review: 1328362