RINGS OF WEAK DIMENSION ONE AND SYZYGETIC IDEALS

FRANCESC PLANAS-VILANOVA

(Communicated by Wolmer V. Vasconcelos)

Abstract. We prove that rings of weak dimension one are the rings with all (three-generated) ideals syzygetic. This leads to a characterization of these rings in terms of the André-Quillen homology.

Let I be an ideal of a commutative ring A. There is a canonical morphism of graded A-algebras $\alpha : S(I) \to R(I)$ from the symmetric algebra of I onto its Rees algebra. The ideal I is said to be of linear type if α is an isomorphism. If $\alpha_2 : S_2(I) \to I^2$ is an isomorphism, I is said to be syzygetic.

In [C] (Theorem 4), Costa showed that a domain A is Prüfer if and only if I is of linear type for every two-generated ideal I of A and I is syzygetic for every three-generated ideal I of A. In this note we show that the preliminary hypothesis that A is a domain can be removed by changing the Prüfer condition to the condition $wd(A) \leq 1$, weak dimension of A one or less. Moreover, the condition that every two-generated ideal of A be of linear type is not necessary. Concretely,

Theorem 1. Let A be a commutative ring. The following conditions are equivalent:

i) $wd(A) \leq 1$.

ii) Every ideal of A is of linear type.

iii) Every ideal of A is syzygetic.

iv) Every three-generated ideal of A is syzygetic.

Recall that $wd(A)$ is the supremum of the flat dimensions of all A-modules. The von Neumann regular rings are those of weak dimension zero. Semidirect rings (i.e. rings with all their finitely generated ideals projective) have weak dimension one or less. In fact, A is a semidirect ring if and only if $wd(A) \leq 1$ and A is coherent. A semidirect domain is called a Prüfer ring. For a domain A, to be Prüfer is equivalent to $wd(A) \leq 1$ (see [B] or [R]). In particular, if A is a domain, Theorem 1 characterizes Prüfer rings as domains with every three-generated ideal being syzygetic.

Before proving Theorem 1 we need the following two lemmas.

Lemma 2. Let (A, m) be a local ring. Suppose that there exist two nonzero elements $a, b \in A$ with $ab = 0$. If (a) is syzygetic, then (a, b) is not.

Received by the editors November 4, 1994 and, in revised form, April 18, 1995.

1991 Mathematics Subject Classification. Primary 13F05, 13A30; Secondary 13D03.

Key words and phrases. Ideal of linear type, syzygetic ideal, weak dimension, homology of commutative rings.

©1996 American Mathematical Society
Proof. Let \(I = (a, b) \subset \mathfrak{m} \) be the ideal of \(A \) generated by the zero divisors \(a, b \). If \(x \in (a) \cap (b) \), \(x = ac = bd \), and multiplying by \(a, c \in (0 : a^2) \). Since \((a) \) is syzygetic, \(c \in (0 : a) \) (see [V], page 31) and \(x = ca = 0 \). Therefore, \((a) \cap (b) = 0 \).

Let \(0 \to Z_1 \to A^2 \overset{f}{\to} I \to 0 \) be the free presentation of \(I \) defined by \(f((1, 0)) = a, f((0, 1)) = b \). Consider \(0 \to N \to A[X, Y] \overset{s}{\to} \mathbf{R}(I) \to 0 \), the induced free presentation of \(\mathbf{R}(I) = \oplus_{q \geq 0} I^q t^q \), defined by \(s(X) = at, s(Y) = bt \).

If \(I = (a, b) \) were syzygetic, the quadratic relation \(XY \) on \(a, b \) could be written in terms of linear relations on \(a, b \) ([V], page 29), i.e.

\[
XY = (a_1X + b_1Y)(c_1X + d_1Y) + \cdots + (a_rX + b_rY)(c_rX + d_rY)
\]

with \(c_iX + d_iY \in N_1 = Z_1 \). In particular, \(c_1a = -d_1b \in (a) \cap (b) = 0 \). Therefore, \(c_1a = d_1b = 0 \) and if \(a, b \neq 0 \), then \(c_i, d_i \) would be zero divisors, in particular, elements of \(\mathfrak{m} \). Comparing the coefficients of \(XY \) on both sides of (1) we would get the contradiction \(1 = \sum c_i a_i d_i + b_i c_i \in \mathfrak{m} \).

Lemma 3. Let \((A, \mathfrak{m}, k)\) be a local ring. Let \(I \) be a nonprincipal finitely generated ideal of \(A \). If \(I \) is syzygetic, then \(I^2 \) is not.

Proof. As \(I \) is not principal, \(\dim_k(I/\mathfrak{m}I) = n > 1 \). By hypothesis, \(\alpha_2 \) is an isomorphism and hence, \(\alpha_2 \otimes 1_k \) is also an isomorphism. Therefore,

\[
\dim_k(I^2/\mathfrak{m}I^2) = \dim_k(S^2_k(I/\mathfrak{m}I)) = \frac{n(n + 1)}{2} = p.
\]

Thus, \(\dim_k(S^2_k(I^2/\mathfrak{m}I^2)) = \frac{p(p + 1)}{2} = \frac{n^2 + n + 2}{8} \). Since \(\alpha_4 \) is an epimorphism, \(\alpha_4 \otimes 1_k \) is also an epimorphism. So, one has

\[
\dim_k(I^4/\mathfrak{m}I^4) \leq \dim_k(S^4_k(I/\mathfrak{m}I)) = \frac{n(n + 1)(n^2 + 5n + 6)}{24}.
\]

Finally, one observes that if \(n \neq 0, 1 \), then \(3(n^2 + n + 2) > (n^2 + 5n + 6) \). In particular, \(S^2_k(I^2/\mathfrak{m}I^2) \not\cong I^4/\mathfrak{m}I^4 \) and \(S^4_k(I^2) \not\cong I^4 \).

Proof of the theorem. Recall \(wd(A) \leq 1 \) is equivalent to every ideal of \(A \) being flat ([R]). If \(I \) is a flat ideal of \(A \), then \(I \) is an ideal of linear type (see Proposition 3 [MR] or [P]). This proves \(i) \Rightarrow ii) \). Let us show that \(iv) \Rightarrow i) \).

Let \(I \) be an ideal of \(A \). To show \(I \) is flat, one can suppose \(I \) is finitely generated, since any ideal is the direct limit of finitely generated ideals, and the direct limit of flat modules is again a flat module. Write \(I = (x_1, \ldots, x_n) \) and let us see that \(I_\mathfrak{m} \) is a free \(A_\mathfrak{m} \)-module for every maximal ideal \(\mathfrak{m} \) of \(A \). If \(I \nsubseteq \mathfrak{m} \), \(I_\mathfrak{m} = A_\mathfrak{m} \). If \(I \subseteq \mathfrak{m} \), consider \(J = (x_1, x_2) \subseteq I \). By hypothesis \(iv) \), \(J \) and \(J^2 \) are syzygetic ideals of \(A \). Localizing at \(\mathfrak{m} \), Lemma 3 provides an element \(z \in J \) with \(J_\mathfrak{m} = (\frac{z}{1}) \). Therefore \(I_{\mathfrak{m}} = (1, \frac{x_1}{1}, \ldots, \frac{x_n}{1}) \). Now, take \(J' = (z, x_3) \subseteq I \). Repeating the process we deduce that \(I_{\mathfrak{m}} \) is a principal ideal of \(A_\mathfrak{m} \). By hypothesis \(iv) \) and Lemma 2, \(A_\mathfrak{m} \) is a domain, in particular, \(I_{\mathfrak{m}} \) is an ideal generated by a nonzero divisor, i.e. a free \(A_{\mathfrak{m}} \)-module.

Remark 4. From Lemma 2 and Costa’s Theorem 3 of [C] one deduces that for a commutative ring \(A \) to be a locally an integrally closed domain is equivalent to being of linear type for every two-generated ideal of \(A \). Moreover, the same example given by Costa in his paper shows that this last condition is strictly stronger than every two-generated ideal of \(A \) being syzygetic.
In terms of the André-Quillen homology (see [A]) and as a corollary of Theorem 1, rings of weak dimension one are characterized as follows:

Corollary 5. Let A be a commutative ring. The following conditions are equivalent:

i) $wd(A) \leq 1$.

ii) $H_2(A, B, \cdot) = 0$ for every quotient ring $B = A/I$ of A.

iii) $H_2(A, B, B) = 0$ for every quotient ring $B = A/I$ of A by a three-generated ideal I of A.

Proof. It follows from the fact that if I is an ideal of A, $B = A/I$ and $\alpha_2 : S_2(I) \to I^2$ is the canonical morphism, then $H_2(A, B, B) = \text{Ker} \alpha_2$. Moreover, if I is syzygetic, $H_2(A, B, W) = \text{Tor}_1^B(I/I^2, W)$ for any B-module W (see, for instance, [BR]).

Acknowledgements

I am very grateful to José M. Giral for the very helpful discussions concerning this paper.

References

DEPARTAMENT DE MATEMÀTICA APPLICADA I, ETSEIB, UNIVERSITAT POLÍTÈCNICA DE CATALUNYA, DIAGONAL 647, E-08028 BARCELONA, SPAIN

E-mail address: planas@ma1.upc.es