Boundaries of rotation sets for homeomorphisms of the $n$-torus
HTML articles powered by AMS MathViewer
- by Richard Swanson and Russell Walker
- Proc. Amer. Math. Soc. 124 (1996), 3247-3255
- DOI: https://doi.org/10.1090/S0002-9939-96-03426-0
- PDF | Request permission
Abstract:
We construct a $C^\omega$ diffeomorphism of the 3-torus whose rotation set is not closed. We prove that the rotation set of a homeomorphism of the $n$-torus contains the extreme points of its closed convex hull. Finally, we show that each pseudo-rotation set is closed for torus homeomorphisms.References
- Marcy Barge and Richard Swanson, Rotation shadowing properties of circle and annulus maps, Ergodic Theory Dynam. Systems 8 (1988), no. 4, 509–521. MR 980794, DOI 10.1017/S0143385700004661
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- John Franks, Realizing rotation vectors for torus homeomorphisms, Trans. Amer. Math. Soc. 311 (1989), no. 1, 107–115. MR 958891, DOI 10.1090/S0002-9947-1989-0958891-1
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2
- Michael Handel, The rotation set of a homeomorphism of the annulus is closed, Comm. Math. Phys. 127 (1990), no. 2, 339–349. MR 1037109, DOI 10.1007/BF02096762
- Ricardo Mañé, Ergodic theory and differentiable dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 8, Springer-Verlag, Berlin, 1987. Translated from the Portuguese by Silvio Levy. MR 889254, DOI 10.1007/978-3-642-70335-5
- MichałMisiurewicz and Krystyna Ziemian, Rotation sets for maps of tori, J. London Math. Soc. (2) 40 (1989), no. 3, 490–506. MR 1053617, DOI 10.1112/jlms/s2-40.3.490
- S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5–71. MR 699057, DOI 10.1007/BF02698773
- H. Poincarè, “Étude particulière du tore”, Chap. XV in Sur les courbes définies par les equations différentielles. III, J. Math. Pures Appl. (4) 1 (1885), 220-244; reprinted in Oeuvres de Henri Poincaré. Tome I, Gauthier-Villars, Paris, 1928, pp. 137-158.
Bibliographic Information
- Richard Swanson
- Affiliation: Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717-0240
- Email: dswanson@math.montana.edu
- Russell Walker
- Affiliation: Department of Mathematical Sciences, Montana State University, Bozeman, Montana 59717-0240
- Email: walker@math.montana.edu
- Received by editor(s): April 4, 1995
- Additional Notes: Research supported in part by NSF-OSR grant #9350546
- Communicated by: Linda Keen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3247-3255
- MSC (1991): Primary 58J22
- DOI: https://doi.org/10.1090/S0002-9939-96-03426-0
- MathSciNet review: 1328381