Normal subgroups of $PSL_2(Z[\sqrt {-3}])$
HTML articles powered by AMS MathViewer
- by Roger C. Alperin
- Proc. Amer. Math. Soc. 124 (1996), 2935-2941
- DOI: https://doi.org/10.1090/S0002-9939-96-03429-6
- PDF | Request permission
Abstract:
We classify the normal subgroups of $PSL_2(Z[\sqrt {-3}])$ of index less than 960; they are all congruence subgroups.References
- Roger Alperin, Homology of $\textrm {SL}_{2}(\textbf {Z}[\omega ])$, Comment. Math. Helv. 55 (1980), no.ย 3, 364โ377. MR 593052, DOI 10.1007/BF02566693
- Roger Alperin, Locally compact groups acting on trees and property $T$, Monatsh. Math. 93 (1982), no.ย 4, 261โ265. MR 666827, DOI 10.1007/BF01295226
- Martin R. Bridson, Geodesics and curvature in metric simplicial complexes, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp.ย 373โ463. MR 1170372
- Benjamin Fine, Algebraic theory of the Bianchi groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker, Inc., New York, 1989. MR 1010229
- Benjamin Fine and Morris Newman, The normal subgroup structure of the Picard group, Trans. Amer. Math. Soc. 302 (1987), no.ย 2, 769โ786. MR 891646, DOI 10.1090/S0002-9947-1987-0891646-3
- Jean-Pierre Serre, Le problรจme des groupes de congruence pour SL2, Ann. of Math. (2) 92 (1970), 489โ527 (French). MR 272790, DOI 10.2307/1970630
- John R. Stallings, Non-positively curved triangles of groups, Group theory from a geometrical viewpoint (Trieste, 1990) World Sci. Publ., River Edge, NJ, 1991, pp.ย 491โ503. MR 1170374
Bibliographic Information
- Roger C. Alperin
- Affiliation: Department of Mathematics and Computer Science, San Jose State University, San Jose, California 95192
- MR Author ID: 25090
- Email: alperin@math.sjsu.edu
- Received by editor(s): February 7, 1995
- Additional Notes: The authorโs research was supported by NSA and NSF
- Communicated by: Ronald M. Solomon
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2935-2941
- MSC (1991): Primary 20E99, 20H25
- DOI: https://doi.org/10.1090/S0002-9939-96-03429-6
- MathSciNet review: 1340373