A simple proof of Singer’s representation theorem
HTML articles powered by AMS MathViewer
- by Wolfgang Hensgen
- Proc. Amer. Math. Soc. 124 (1996), 3211-3212
- DOI: https://doi.org/10.1090/S0002-9939-96-03493-4
- PDF | Request permission
Abstract:
Let $\Omega$ be a compact Hausdorff space and $X$ a Banach space. Singer’s theorem states that under the dual pairing $(f,m)\mapsto \int \langle f,dm\rangle$, the dual space of $C(\Omega ;X)$ is isometric to $rcabv (\Omega ;X’)$. Using the Hahn-Banach theorem and the (scalar) Riesz representation theorem, a proof of Singer’s theorem is given which appears to be simpler than the proofs supplied earlier by Singer (1957, 1959) and Dinculeanu (1959, 1967).References
- N. V. Prodan, Optimality conditions in problems of linear synthesis, Avtomat. i Telemeh. 10 (1969), 26–34 (Russian, with English summary); English transl., Automat. Remote Control 10 (1969), 1564–1571. MR 0452946
- Nicolae Dinculeanu, Sur la représentation intégrale des certaines opérations linéaires. III, Proc. Amer. Math. Soc. 10 (1959), 59–68 (French). MR 104149, DOI 10.1090/S0002-9939-1959-0104149-9
- N. Dinculeanu, Vector measures, Hochschulbücher für Mathematik, Band 64, VEB Deutscher Verlag der Wissenschaften, Berlin, 1966. MR 0206189
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Ivan Zinger, Linear functionals on the space of continuous mappings of a compact Hausdorff space into a Banach space, Rev. Math. Pures Appl. 2 (1957), 301–315 (Russian). MR 96964
- Ivan Singer, Sur les applications linéaires intégrales des espaces de fonctions continues. I, Rev. Math. Pures Appl. 4 (1959), 391–401 (French). MR 115080
Bibliographic Information
- Wolfgang Hensgen
- Affiliation: NWF I – Mathematik, Universität Regensburg, D– 93040 Regensburg, Germany
- Email: wolfgang.hensgen@mathematik.uni-regensburg.de
- Received by editor(s): April 21, 1995
- Communicated by: Dale E. Alspach
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3211-3212
- MSC (1991): Primary 46E15, 46E40
- DOI: https://doi.org/10.1090/S0002-9939-96-03493-4
- MathSciNet review: 1343697