Sur les metriques admettant les plans comme surfaces minimales
HTML articles powered by AMS MathViewer
- by M. Bekkar
- Proc. Amer. Math. Soc. 124 (1996), 3077-3083
- DOI: https://doi.org/10.1090/S0002-9939-96-03530-7
- PDF | Request permission
Abstract:
We establish the system of partial differential equations satisfied by the riemannian metrics on open subsets of ${\mathbb {R}}^{3}$ which admit planes as minimal surfaces. This is a nonlinear system of 10 partial differential equations, with the euclidian metric as a particular solution. In a previous work, we solved this system for axially symmetrical metrics. In this paper we linearize the system at the euclidian metric and solve the linear system. We obtain a 20-dimensional space of solutions.References
- M. Bekkar, Exemples de surfaces minimales dans l’espace de Heisenberg, Rend. Sem. Fac. Sci. Univ. Cagliari 61 (1991), no. 2, 123–130 (French, with English and French summaries). MR 1193456
- —, Métriques riemanniennes qui admettent le plan comme surface minimale, Thèse de Doctorat, Université de Haute Alsace, Mulhouse, Septembre 1993.
- Mohamed Bekkar, Sur une caractérisation des métriques de Heisenberg, C. R. Acad. Sci. Paris Sér. I Math. 318 (1994), no. 11, 1017–1019 (French, with English and French summaries). MR 1281883
- R. L. Bryant, On metrics in 3-space for which the planes are minimal, Preprint, Duke University, September 1994.
- Robert Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0256278
Bibliographic Information
- M. Bekkar
- Affiliation: Université de Haute Alsace, 4 rue des Frères Lumière, F 68093 Mulhouse cedex, France et Université d’Oran Es-Sénia, Institut de Mathématiques, Oran, Algérie
- Email: M.Bekkar{@}univ-mulhouse.fr
- Received by editor(s): March 15, 1995
- Communicated by: Christopher Croke
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3077-3083
- MSC (1991): Primary 49Q05, 53A10
- DOI: https://doi.org/10.1090/S0002-9939-96-03530-7
- MathSciNet review: 1346962