Sharp Hölder estimates for $\bar \{\partial \}$ on ellipsoids and their complements via order of contact
HTML articles powered by AMS MathViewer
- by Julian F. Fleron
- Proc. Amer. Math. Soc. 124 (1996), 3193-3202
- DOI: https://doi.org/10.1090/S0002-9939-96-03664-7
- PDF | Request permission
Abstract:
We generalize the results of Range and Diederich et al., finding Hölder estimates for the solution of the Cauchy-Riemann equations for higher order forms on ellipsoids. We prove a dual result near the concave boundaries of complemented complex ellipsoids. In all cases the Hölder exponents are characterized in terms of the order of contact of the boundary of the domain with complex linear spaces of the appropriate dimension. Optimality is demonstrated in the convex settings, and for $(0,1)$ forms in the concave setting. Partial results are given for complemented real ellipsoids and a method for demonstrating optimality of Hortmann’s result on complemented strictly pseudoconvex domains is given for $(0,1)$ forms.References
- Joaquim Bruna and Joan del Castillo, Hölder and $L^p$-estimates for the $\partial$ equation in some convex domains with real-analytic boundary, Math. Ann. 269 (1984), no. 4, 527–539. MR 766012, DOI 10.1007/BF01450763
- Klas Diederich, John Erik Fornæss, and Jan Wiegerinck, Sharp Hölder estimates for $\overline \partial$ on ellipsoids, Manuscripta Math. 56 (1986), no. 4, 399–417. MR 860730, DOI 10.1007/BF01168502
- J. Fleron, Hölder estimates for the solution of the Cauchy-Riemann equations near weakly pseudoconcave boundaries, Ph.D. dissertation, SUNY University at Albany, May 1994.
- Hans Grauert and Ingo Lieb, Das Ramirezsche Integral und die Lösung der Gleichung $\bar \partial f=\alpha$ im Bereich der beschränkten Formen, Rice Univ. Stud. 56 (1970), no. 2, 29–50 (1971) (German). MR 273057
- G. M. Henkin, Integral representation of functions in strongly pseudoconvex regions, and applications to the $\overline \partial$-problem, Mat. Sb. (N.S.) 82 (124) (1970), 300–308 (Russian). MR 0265625
- A. V. Romanov and G. M. Henkin, Exact Hölder estimates of the solutions of the $\bar \delta$-equation, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 1171–1183 (Russian). MR 0293121
- Michael Hortmann, Über die Lösbarkeit der $\bar \partial$-Gleichung auf Ringgebieten mit Hilfe von $L^{p}$-, ${\cal C}^{k}$- und ${\cal D}$-stetigen Integraloperatoren, Math. Ann. 223 (1976), no. 2, 139–156 (German). MR 422688, DOI 10.1007/BF01360878
- Norberto Kerzman, Hölder and $L^{p}$ estimates for solutions of $\bar \partial u=f$ in strongly pseudoconvex domains, Comm. Pure Appl. Math. 24 (1971), 301–379. MR 281944, DOI 10.1002/cpa.3160240303
- Steven G. Krantz, Function theory of several complex variables, 2nd ed., The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1992. MR 1162310
- Jeffery D. McNeal, Convex domains of finite type, J. Funct. Anal. 108 (1992), no. 2, 361–373. MR 1176680, DOI 10.1016/0022-1236(92)90029-I
- R. Michael Range, On Hölder estimates for $\bar \partial u=f$ on weakly pseudoconvex domains, Several complex variables (Cortona, 1976/1977) Scuola Norm. Sup. Pisa, Pisa, 1978, pp. 247–267. MR 681314
- R. Michael Range, Holomorphic functions and integral representations in several complex variables, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986. MR 847923, DOI 10.1007/978-1-4757-1918-5
- R. Michael Range and Yum-Tong Siu, Uniform estimates for the $\bar \partial$-equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. 206 (1973), 325–354. MR 338450, DOI 10.1007/BF01355986
- Ji Ye Yu, Multitypes of convex domains, Indiana Univ. Math. J. 41 (1992), no. 3, 837–849. MR 1189914, DOI 10.1512/iumj.1992.41.41044
Bibliographic Information
- Julian F. Fleron
- Affiliation: Department of Mathematics, Westfield State College, Westfield, Massachusetts 01086
- Email: J_Fleron@FOMA.WSC.Mass.Edu
- Received by editor(s): April 10, 1995
- Additional Notes: This work is part of the authors Ph.D. dissertation at SUNY University at Albany, and was completed while the author was a U.S. Department of Education Fellow. The author would like to express his gratitude to his advisor Prof. R.M. Range for his continued guidance and support.
- Communicated by: Eric Bedford
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3193-3202
- MSC (1991): Primary 32F10, \, 32F20
- DOI: https://doi.org/10.1090/S0002-9939-96-03664-7
- MathSciNet review: 1363459