Commuting holomorphic functions and hyperbolic automorphisms
HTML articles powered by AMS MathViewer
- by Chiara de Fabritiis
- Proc. Amer. Math. Soc. 124 (1996), 3027-3037
- DOI: https://doi.org/10.1090/S0002-9939-96-03729-X
- PDF | Request permission
Abstract:
We give a complete classification of the holomorphic self-maps of the unit ball of $\mathbf {C}^{n}$ into itself which commute with a given hyperbolic automorphism.References
- Marco Abate, Iteration theory of holomorphic maps on taut manifolds, Research and Lecture Notes in Mathematics. Complex Analysis and Geometry, Mediterranean Press, Rende, 1989. MR 1098711
- Marco Abate and Jean-Pierre Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), no. 2, 503–512. MR 1065938, DOI 10.1090/S0002-9939-1991-1065938-8
- Carl C. Cowen, Commuting analytic functions, Trans. Amer. Math. Soc. 283 (1984), no. 2, 685–695. MR 737892, DOI 10.1090/S0002-9947-1984-0737892-8
- C. de Fabritiis, G. Gentili, On holomorphic maps which commute with hyperbolic automorphisms, to appear in Advances in Math., 1995.
- Tullio Franzoni and Edoardo Vesentini, Holomorphic maps and invariant distances, Notas de Matemática [Mathematical Notes], vol. 69, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 563329
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- Steven G. Krantz, Function theory of several complex variables, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 635928
- Marek Kuczma, Functional equations in a single variable, Monografie Matematyczne, Tom 46, Państwowe Wydawnictwo Naukowe, Warsaw, 1968. MR 0228862
- Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594, DOI 10.1007/978-1-4613-8098-6
- A.L. Shields, On fixed points of commuting analytic functions, Proc. Amer. Math. Soc. 15 (1964), 703–706.
Bibliographic Information
- Chiara de Fabritiis
- Affiliation: International School for Advanced Studies, via Beirut 2-4, 34014, Trieste, Italy
- MR Author ID: 294935
- Email: FABRITII@NEUMANN.SISSA.IT
- Received by editor(s): December 18, 1994
- Communicated by: Eric Bedford
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3027-3037
- MSC (1991): Primary 32A10; Secondary 30E25, 32A40, 32A30
- DOI: https://doi.org/10.1090/S0002-9939-96-03729-X
- MathSciNet review: 1371120