On maximal functions in Orlicz spaces
HTML articles powered by AMS MathViewer
- by Hiro-o Kita
- Proc. Amer. Math. Soc. 124 (1996), 3019-3025
- DOI: https://doi.org/10.1090/S0002-9939-96-03807-5
- PDF | Request permission
Abstract:
Let $\Phi (t)$ and $\Psi (t)$ be the functions having the representations $\Phi (t)=\int _{0}^{t} a(s)ds$ and $\Psi (t)=\int _{0}^{t} b(s)ds$, where $a(s)$ is a positive continuous function such that $\int _{1}^{\infty }\frac {a(s)}{s}ds=+\infty$ and $b(s)$ is quasi-increasing. Then the maximal function $Mf$ is a function in Orlicz space $L^{\Phi }$ for all $f\in L^{\Psi }$ if and only if there exists a positive constant $c_{1}$ such that $\int _{1}^{s} \frac {a(t)}{t}dt\leq c_{1}b(c_{1}s)$ for all $s\geq 1$.References
- Miguel de Guzmán, Differentiation of integrals in $R^{n}$, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661, DOI 10.1007/BFb0081986
- Hiro\B{o} Kita and Kaoru Yoneda, A treatment of Orlicz spaces as a ranked space, Math. Japon. 37 (1992), no. 4, 775–802. MR 1176053
- Vakhtang Kokilashvili and Miroslav Krbec, Weighted inequalities in Lorentz and Orlicz spaces, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1156767, DOI 10.1142/9789814360302
- M. M. Rao and Z. D. Ren, Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York, 1991. MR 1113700
- Alberto Torchinsky, Real-variable methods in harmonic analysis, Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986. MR 869816
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- Hiro-o Kita
- Affiliation: Department of Mathematics, Faculty of Education, Oita University, 700 Dannoharu Oita 870-11, Japan
- Email: hkita@oita-cc.cc.oita-u.ac.jp
- Received by editor(s): December 6, 1993
- Communicated by: J. Marshall Ash
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3019-3025
- MSC (1991): Primary 42B25, 46E30
- DOI: https://doi.org/10.1090/S0002-9939-96-03807-5
- MathSciNet review: 1376993