ON PASTING A_{p}-WEIGHTS

BERND S. W. SCHRÖDER

(Communicated by J. Marshall Ash)

Abstract

Theorem 3 gives a condition when two A_{p}-weights can be "pasted" together to yield another A_{p}-weight. It is subsequently used in Example 6 to give an example that shows that a necessary condition by Gohberg, Krupnik, and Spitkovsky is not sufficient.

An A_{p}-weight (cf. [HMW]) is a weight function w on $[0,2 \pi]$ such that Fourier series converge in $L^{p}(w)$, resp. such that the Hilbert transform is a bounded operator on $L^{p}(w)$. A_{p}-weights on contours are related to the boundedness of the Cauchy operator for that contour. Given two A_{p}-weights $w_{1}:[a, b] \rightarrow \mathbf{R}^{+}$and $w_{2}:[a, b] \rightarrow$ \mathbf{R}^{+}(with $a<0<b$) the question of when the function $w_{1} \mathbf{1}_{[a, 0)}+w_{2} \mathbf{1}_{[0, b]}$ is also an A_{p}-weight is important in operator theory for A_{p}-weights on contours (cf. [GKS]) and in general for the construction of examples (cf. [CU]) of A_{p}-weights. In this note we give a necessary and sufficient condition for this to happen (cf. Theorem 3) and show some applications (cf. Remark 4, Example 6, Corollary 8, and Example 9).
Definition 1. For $1<p<\infty$ a function $w:[a, b] \rightarrow \mathbf{R}_{0}^{+}$is called an A_{p}-weight iff

$$
K_{w}:=\sup _{I \subseteq[a, b]}\left(\frac{1}{|I|} \int_{I} w(x) d x\right)\left(\frac{1}{|I|} \int_{I} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1}<\infty
$$

where I denotes an arbitrary subinterval of $[a, b] . w$ is called an A_{1}-weight iff

$$
K_{w}:=\sup _{I \subseteq[a, b]}\left(\frac{1}{|I|} \int_{I} w(x) d x\right) \operatorname{esssup}_{I} \frac{1}{w}<\infty
$$

K_{w} is called the A_{p}-constant.
Remark 2. K_{w} will always be at least 1 as via Hölder's inequality

$$
1=\frac{1}{|I|} \int_{I} w^{1 / p} \frac{1}{w^{1 / p}} d x \leq\left(\frac{1}{|I|} \int_{I} w d x\right)^{1 / p}\left(\frac{1}{|I|} \int_{I} \frac{1}{w^{1 /(p-1)}} d x\right)^{(p-1) / p}
$$

A similar argument holds for $p=1$.
Theorem 3. Let $1<p<\infty$ and let $w_{1}:[a, 0] \rightarrow \mathbf{R}_{0}^{+}$and $w_{2}:[0, b] \rightarrow \mathbf{R}_{0}^{+}$be A_{p}-weights. Define

$$
w(x):= \begin{cases}w_{1}(x), & \text { if } x \in[a, 0) \\ w_{2}(x), & \text { if } x \in[0, b]\end{cases}
$$

[^0]Then $w:[a, b] \rightarrow \mathbf{R}_{0}^{+}$is an A_{p}-weight iff

$$
\limsup _{\varepsilon \rightarrow 0} \frac{\int_{0}^{\varepsilon} w_{2}(x) d x}{\int_{-\varepsilon}^{0} w_{1}(x) d x}<\infty
$$

and

$$
\liminf _{\varepsilon \rightarrow 0} \frac{\int_{0}^{\varepsilon} w_{2}(x) d x}{\int_{-\varepsilon}^{0} w_{1}(x) d x}>0
$$

Proof. " \Rightarrow ": Assume that w is an A_{p}-weight. Then there is a constant $C>0$ such that for all $\varepsilon>0$ with $\varepsilon<|a|, b$ we have

$$
\begin{aligned}
C & \geq\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} w(x) d x\right)\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
& \geq\left(\frac{1}{2 \varepsilon} \int_{0}^{\varepsilon} w_{2}(x) d x\right)\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x\right)^{p-1} \frac{\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x}{\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x} \\
& =\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x\right)\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x\right)^{p-1} \frac{\frac{1}{2 \varepsilon} \int_{0}^{\varepsilon} w_{2}(x) d x}{\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x} \\
& \geq \frac{1}{2^{p}} \frac{\int_{0}^{\varepsilon} w_{2}(x) d x}{\int_{-\varepsilon}^{0} w_{1}(x) d x} .
\end{aligned}
$$

To prove the statement about the limit inferior use the same trick to show that the limit superior of the multiplicative inverse is finite.
$" \Leftarrow "$: We can assume there are $C>c>0$ such that for $\varepsilon>0$ with $\varepsilon<|a|, b$ we have

$$
c<\frac{\int_{0}^{\varepsilon} w_{2}(x) d x}{\int_{-\varepsilon}^{0} w_{1}(x) d x}<C .
$$

Then

$$
\begin{aligned}
&\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} w(x) d x\right)\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{\varepsilon} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
&=\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x+\frac{1}{2 \varepsilon} \int_{0}^{\varepsilon} w_{2}(x) d x\right) \\
& \times\left(\frac{1}{2 \varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x+\frac{1}{2 \varepsilon} \int_{0}^{\varepsilon} \frac{1}{\left(w_{2}(x)\right)^{1 /(p-1)}} d x\right)^{p-1} \\
& \leq \max \left\{\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x, \frac{1}{\varepsilon} \int_{0}^{\varepsilon} w_{2}(x) d x\right\} \\
& \times \max \left\{\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x, \frac{1}{\varepsilon} \int_{0}^{\varepsilon} \frac{1}{\left(w_{2}(x)\right)^{1 /(p-1)}} d x\right\}^{p-1}
\end{aligned}
$$

$$
\begin{aligned}
& \leq \max \left\{K_{w_{1}}, K_{w_{2}},\left(\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} w_{1}(x) d x\right)\left(\frac{1}{\varepsilon} \int_{0}^{\varepsilon} \frac{1}{\left(w_{2}(x)\right)^{1 /(p-1)}} d x\right)^{p-1}\right. \\
& \leq \max \left\{K_{w_{1}}, K_{w_{2}}, \frac{\int_{-\varepsilon}^{0} \int_{0}^{\varepsilon} w_{1}(x) d x}{\int_{0}^{\varepsilon} w_{2}(x) d x}\left(\frac{1}{\varepsilon} \int_{0}^{\varepsilon} w_{2}(x) d x\right)\left(\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x\right)^{p-1}\right\} \\
& \left.\quad \frac{\int_{0}^{\varepsilon} w_{2}(x) d x}{\int_{-\varepsilon}^{0} w_{1}^{\varepsilon}(x) d x} \frac{1}{\left(w_{2}(x)\right)^{1 /(p-1)}} d x\right)^{p-1} \\
& \leq \\
& \left.\leq \max \left\{W_{1}(x) d x\right)\left(\frac{1}{\varepsilon} \int_{-\varepsilon}^{0} \frac{1}{\left(w_{1}(x)\right)^{1 /(p-1)}} d x\right)^{p-1}\right\} \\
& \left.K_{w_{2}}, \frac{1}{c} K_{w_{2}}, C K_{w_{1}}\right\}
\end{aligned}
$$

For intervals I that do not contain 0

$$
\left(\frac{1}{|I|} \int_{I} w(x) d x\right)\left(\frac{1}{|I|} \int_{I} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \leq \max \left\{K_{w_{1}}, K_{w_{2}}\right\}
$$

For intervals $[d, e]$ with $0 \in[d, e]$ and $|d|, e \leq \min \{|a|, b\}$ we have with $m:=$ $\max \{|d|, e\}$

$$
\begin{aligned}
& \left(\frac{1}{e-d} \int_{d}^{e} w(x) d x\right)\left(\frac{1}{e-d} \int_{d}^{e} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
& \quad \leq\left(\frac{1}{e-d} \int_{-m}^{m} w(x) d x\right)\left(\frac{1}{e-d} \int_{-m}^{m} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
& \quad \leq 2^{p}\left(\frac{1}{2 m} \int_{-m}^{m} w(x) d x\right)\left(\frac{1}{2 m} \int_{-m}^{m} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
& \quad \leq 2^{p} \max \left\{K_{w_{1}}, K_{w_{2}}, \frac{1}{c} K_{w_{2}}, C K_{w_{1}}\right\}
\end{aligned}
$$

Without loss of generality assume that $|a| \leq b$. So far we have that $\left.w\right|_{[a,|a|]}$ and $\left.w\right|_{[0, b]}$ are A_{p}-weights. The only intervals left to consider are intervals I that are not contained in $[a,|a|]$ or $[0, b]$. For such intervals I we have $|I| \geq|a|$ and

$$
\begin{aligned}
& \left(\frac{1}{|I|} \int_{I} w(x) d x\right)\left(\frac{1}{|I|} \int_{I} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1} \\
& \quad \leq\left(\frac{b-a}{|a|}\right)^{p}\left(\frac{1}{b-a} \int_{a}^{b} w(x) d x\right)\left(\frac{1}{b-a} \int_{a}^{b} \frac{1}{(w(x))^{1 /(p-1)}} d x\right)^{p-1}
\end{aligned}
$$

Remark 4 (I. Spitkovsky). The above obviously shows that on the set of all $A_{p^{-}}$ weights w on intervals $\left[0, a_{w}\right.$] the relation $w_{1} \sim w_{2}$ iff

$$
w(x):= \begin{cases}w_{1}(-x), & \text { if } x \in\left[-a_{w_{1}}, 0\right] \\ w_{2}(x), & \text { if } x \in\left[0, a_{w_{2}}\right]\end{cases}
$$

is an A_{p}-weight is an equivalence relation. An immediate application of this is the following improvement of Lemma 1.1 of [GKS]: Let Γ be a contour consisting of a finite number of closed curves and open arcs that satisfy the Carleson condition. Assume there are at most finitely many points of self-intersection z_{1}, \ldots, z_{m}. For
z_{k} let $\gamma_{k, 1}, \ldots, \gamma_{k, n_{k}}$ be simple arcs that do not contain z_{k} and such that for some $\varepsilon>0$ we have $\left(\Gamma \cap B_{\varepsilon}\left(z_{k}\right)\right) \backslash \bigcup_{j=1}^{n_{k}} \gamma_{k, j}=\left\{z_{k}\right\}$. Then a weight ρ belongs to $A_{p}(\Gamma)$ iff
(1) ρ is an A_{p}-weight on every simple subarc of $\Gamma \backslash\left\{z_{1}, \ldots, z_{m}\right\}$,
(2) ρ is an A_{p}-weight on all arcs $\gamma_{k, 1} \cup\left\{z_{k}\right\} \cap \gamma_{k, j}$ for $j \in\left\{2, \ldots, n_{k}\right\}$.

This cuts the number of arcs to be checked in (2) from the original $\frac{n_{k}}{2}\left(n_{k}-1\right)$ in Lemma 1.1 in [GKS] to $n_{k}-1$ at each point z_{k}. In fact one can easily use Theorem 3 to prove the above result without referring to [GKS] or any results from operator theory.

Example 5. This example shows that even in very simple cases the new $A_{p^{-}}$ constant can be close to twice the old A_{p}-constant. Thus one cannot trivially repeat the gluing process infinitely many times and come up with an A_{p}-weight once again. We consider $p=2$ and the weight $w(x)=|x|^{\alpha}$ with $\alpha \in(-1,1)$, which can be obtained by pasting $w_{1}:=\left.w\right|_{[-1,0]}$ to $w_{2}:=\left.w\right|_{[0,1]}$. One checks that $K_{w_{1}}=K_{w_{2}}=\frac{1}{1-\alpha^{2}}$, while for $c, d \in(0,1]$ with $c=m d$ we have

$$
\begin{aligned}
& \frac{1}{(c+d)^{2}}\left(\int_{-c}^{d} x^{\alpha} d x\right)\left(\int_{-c}^{d} x^{-\alpha} d x\right) \\
& \quad=\frac{1}{(c+d)^{2}}\left(\frac{1}{\alpha+1} d^{\alpha+1}+\frac{1}{\alpha+1} c^{\alpha+1}\right)\left(\frac{1}{-\alpha+1} d^{-\alpha+1}+\frac{1}{-\alpha+1} c^{-\alpha+1}\right) \\
& \quad=\frac{1}{1-\alpha^{2}}\left(\frac{1+m^{\alpha+1}+m^{-\alpha+1}+m^{2}}{(1+m)^{2}}\right)
\end{aligned}
$$

with the latter parentheses being close to 2 for m small and α close to 1 .
Example 6. For an A_{p}-weight let

$$
T_{z}(w):=\left\{\alpha \in \mathbf{R}:|x-z|^{\alpha} w(x) \text { is an } A_{p} \text {-weight }\right\} .
$$

Since $|\ln | x|\mid$ and $| \ln |x|^{-1}$ are A_{p}-multipliers for $\alpha \in(-1, p-1)$ the functions $w_{1}(x):=|x|^{\alpha}$ and $w_{2}(x):=|x|^{\alpha}|\ln | x| |$ are A_{p}-weights on $[-1,1]$. We clearly have $T_{0}\left(w_{1}\right)=T_{0}\left(w_{2}\right)$, in fact even more is true, namely (D. Cruz-Uribe):

$$
\left\{f: f w_{1} \in A_{p}\right\}=\left\{f: f w_{2} \in A_{p}\right\}
$$

However $w(x):=w_{1}(x) \mathbf{1}_{[-1,0]}+w_{2}(x) \mathbf{1}_{[0,1]}$ is not an A_{p}-weight as

$$
\begin{aligned}
\frac{\int_{0}^{\varepsilon}|x|^{\alpha}|\ln | x| | d x}{\int_{0}^{\varepsilon}|x|^{\alpha} d x} & =\frac{\frac{1}{\alpha+1} \varepsilon^{\alpha+1}|\ln (\varepsilon)|+\frac{1}{(\alpha+1)^{2}} \varepsilon^{\alpha+1}}{\frac{1}{\alpha+1} \varepsilon^{\alpha+1}} \\
& =|\ln (\varepsilon)|+\frac{1}{\alpha+1} .
\end{aligned}
$$

Thus the condition $T_{0}\left(w_{1}\right)=T_{0}\left(w_{2}\right)$, which is necessary for w to be an A_{p}-weight (cf. [GKS], Corollary 3.3) is not sufficient.

Remark 7. It is worth mentioning that analogues of Theorem 3 hold for the pasting of weights on $(-\infty, 0]$ and $[0, \infty)$ (one needs the condition for $\varepsilon \rightarrow 0$ and for $\varepsilon \rightarrow \infty$), for the pasting of A_{1}-weights (same condition, or a similar condition for the essential suprema of $\frac{1}{w_{1}}$ and $\frac{1}{w_{2}}$ on $(-\varepsilon, 0)$ and $\left.(0, \varepsilon)\right)$ and for doubling measures (work with the measures of the intervals $(0, \varepsilon)$ and $(-\varepsilon, 0)$ rather than the integrals of the weights over the intervals).

Corollary 8 (cf. [CU], Theorem 5.3). Let $w:[-1,1] \rightarrow \mathbf{R}_{0}^{+}$be a function that is a doubling weight $/ A_{p}$-weight on $[-1,0]$ and on $[0,1]$. If $\frac{w(t)}{w(-t)}$ is bounded above and away from zero, then w is a doubling weight $/ A_{p}$-weight on $[-1,1]$.

Example 9. Corollary 8 was the sharpest pasting condition known so far. In the following we give an example of a pasting in which Corollary 8 fails and Theorem 3 leads to success. Let $w_{n}:\left[\sum_{k=1}^{n} 2^{-k}, \sum_{k=1}^{n+1} 2^{-k}\right) \rightarrow \mathbf{R}_{0}^{+}$be defined by

$$
w_{n}(x):= \begin{cases}\left|x-\sum_{k=1}^{n} 2^{-k}\right|^{1 / 2}, & \text { if } x \in\left[\sum_{k=1}^{n} 2^{-k}, 2^{-n-2}+\sum_{k=1}^{n} 2^{-k}\right), \\ \left|x-\sum_{k=1}^{n+1} 2^{-k}\right|^{1 / 2}, & \text { if } x \in\left[2^{-n-2}+\sum_{k=1}^{n} 2^{-k}, \sum_{k=1}^{n+1} 2^{-k}\right)\end{cases}
$$

Then $w(x):=w_{n}(x)$ for $x \in\left[\sum_{k=1}^{n} 2^{-k}, \sum_{k=1}^{n+1} 2^{-k}\right)$ is an A_{2}-weight: First consider

$$
\begin{aligned}
\int_{1-2^{-n}}^{1} w(x) d x & =\sum_{k=n}^{\infty} 2 \int_{1-2^{-k}}^{\left(1-2^{-k}\right)+2^{-k-2}}\left|x-\left(1-2^{-k}\right)\right|^{1 / 2} d x \\
& =2 \sum_{k=n}^{\infty} \int_{0}^{2^{-k-2}} x^{1 / 2} d x=\frac{1}{6} \sum_{k=n}^{\infty} 2^{-3 k / 2}=\frac{1}{6\left(1-2^{-3 / 2}\right)} 2^{-3 n / 2}
\end{aligned}
$$

Similarly we prove:

$$
\int_{1-2^{-n}}^{1} \frac{1}{w(x)} d x=C 2^{-n / 2}
$$

This proves the A_{2}-condition for intervals that contain 1 . Intervals that only intersect at most two of the original intervals $I_{n}:=\left[\sum_{k=1}^{n} 2^{-k}, \sum_{k=1}^{n+1} 2^{-k}\right.$) are taken care of by Theorem 3 and intervals I that intersect more than two contain one of the I_{n} and we can do a crude estimate replacing the integration over I with an integration over $I_{n-2} \cup I_{n-1} \cup I_{n} \cup \cdots$ to get the A_{p}-bound. We also see from the above computation that w can be pasted with the A_{2}-weight $v(x):=|x-1|^{1 / 2}$ on the interval $[1,2]$ to yield an A_{2}-weight on $[0,2]$. However it is also clear that the quotient $\frac{w(1-x)}{v(1+x)}$ is not bounded away from zero.

Acknowledgements

I would like to thank D. Cruz-Uribe, C. Moore and I. Spitkovsky for valuable discussions on this subject.

References

[BS1] A. Böttcher and I. Spitkovsky, Wiener-Hopf integral operators with PC symbols on spaces with Muckenhoupt weight, Rev. Mat. Iberoamericana 9 (1993), 257-279. MR 94e:45004
[BS2] , On a theorem of Rooney concerning the spectrum of the singular integral operator, Z. Anal. Anwendungen 12 (1993), 93-96. MR 94h:47093
[CU] D. Cruz-Uribe, Piecewise monotonic doubling measures, Ph. D. dissertation.
[GKS] I. Gohberg, N. Krupnik, I. Spitkovsky, Banach algebras of singular integral operators with piecewise continuous coefficients. General contour and weight, Integral Equations Operator Theory 17 (1993), 322-337. MR 94f:47057
[HMW] R. Hunt, B. Muckenhoupt, R. Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans.Amer. Math. Soc. 176 (1973), 227-251. MR 47:701
[JN] R. Johnson, C. Neugebauer, Change of variable results for A_{p}-and reverse Hölder $R H_{r}$ classes, Trans. Amer. Math. Soc. 328 (1991), 639-666. MR 92c:42019
[Sp] I. Spitkovsky, Singular integral operators with PC symbols on the spaces with general weights, J. Funct. Anal. 105 (1992), 129-143. MR 93d:47057

Department of Mathematics, Hampton University, Hampton, Virginia 23668
E-mail address: schroder@huajai.cs.hamptonu.edu

[^0]: Received by the editors September 14, 1994 and, in revised form, March 25, 1995.
 1991 Mathematics Subject Classification. Primary 26D07, 28A25, 42A20, 47B99.
 Key words and phrases. A_{p}-weight, pasting, contour, Fourier series, Hilbert transform, Cauchy operator.

