Irreducible positive linear maps on operator algebras
HTML articles powered by AMS MathViewer
- by Douglas R. Farenick
- Proc. Amer. Math. Soc. 124 (1996), 3381-3390
- DOI: https://doi.org/10.1090/S0002-9939-96-03441-7
- PDF | Request permission
Abstract:
Motivated by the classical results of G. Frobenius and O. Perron on the spectral theory of square matrices with nonnegative real entries, D. Evans and R. Høegh-Krohn have studied the spectra of positive linear maps on general (noncommutative) matrix algebras. The notion of irreducibility for positive maps is required for the Frobenius theory of positive maps. In the present article, irreducible positive linear maps on von Neumann algebras are explicitly constructed, and a criterion for the irreducibility of decomposable positive maps on full matrix algebras is given.References
- Charles A. Akemann and Gert K. Pedersen, Facial structure in operator algebra theory, Proc. London Math. Soc. (3) 64 (1992), no. 2, 418–448. MR 1143231, DOI 10.1112/plms/s3-64.2.418
- Sergio Albeverio and Raphael Høegh-Krohn, Frobenius theory for positive maps of von Neumann algebras, Comm. Math. Phys. 64 (1978/79), no. 1, 83–94. MR 516998, DOI 10.1007/BF01940763
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- Man Duen Choi, Completely positive linear maps on complex matrices, Linear Algebra Appl. 10 (1975), 285–290. MR 376726, DOI 10.1016/0024-3795(75)90075-0
- Man Duen Choi and Tsit Yuen Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977/78), no. 1, 1–18. MR 498384, DOI 10.1007/BF01360024
- David E. Evans and Raphael Høegh-Krohn, Spectral properties of positive maps on $C^*$-algebras, J. London Math. Soc. (2) 17 (1978), no. 2, 345–355. MR 482240, DOI 10.1112/jlms/s2-17.2.345
- F. R. Gantmacher, Matrizenrechnung. II. Spezielle Fragen und Anwendungen, Hochschulbücher für Mathematik, Band 37, VEB Deutscher Verlag der Wissenschaften, Berlin, 1959 (German). MR 0107647
- Ulrich Groh, The peripheral point spectrum of Schwarz operators on $C^{\ast }$-algebras, Math. Z. 176 (1981), no. 3, 311–318. MR 610212, DOI 10.1007/BF01214608
- Ulrich Groh, Some observations on the spectra of positive operators on finite-dimensional $C^{\ast }$-algebras, Linear Algebra Appl. 42 (1982), 213–222. MR 656426, DOI 10.1016/0024-3795(82)90150-1
- S.-H. Kye, Facial structures for positive linear maps between matrix algebras, Canad. Math. Bull. 39 (1996), 74–82.
- M. Mathieu, Elementary operators on prime $C^{*}$-algebras, I., Math. Ann. 284 (1989), 223–244.
- Helmut H. Schaefer, Banach lattices and positive operators, Die Grundlehren der mathematischen Wissenschaften, Band 215, Springer-Verlag, New York-Heidelberg, 1974. MR 0423039, DOI 10.1007/978-3-642-65970-6
- Hans Schneider, Positive operators and an inertia theorem, Numer. Math. 7 (1965), 11–17. MR 173678, DOI 10.1007/BF01397969
- Erling Størmer, Cones of positive maps, Operator algebras and mathematical physics (Iowa City, Iowa, 1985) Contemp. Math., vol. 62, Amer. Math. Soc., Providence, RI, 1987, pp. 345–356. MR 878386, DOI 10.1090/conm/062/878386
Bibliographic Information
- Douglas R. Farenick
- Affiliation: Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada S4S 0A2
- Email: farenick@abel.math.uregina.ca
- Received by editor(s): May 2, 1995
- Additional Notes: This work is supported in part by a grant from The Natural Sciences and Engineering Research Council of Canada.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3381-3390
- MSC (1991): Primary 46L05
- DOI: https://doi.org/10.1090/S0002-9939-96-03441-7
- MathSciNet review: 1340385