On Liouville decompositions in local fields
HTML articles powered by AMS MathViewer
- by Edward B. Burger
- Proc. Amer. Math. Soc. 124 (1996), 3305-3310
- DOI: https://doi.org/10.1090/S0002-9939-96-03572-1
- PDF | Request permission
Abstract:
In 1962 Erdős proved that every real number may be decomposed into a sum of Liouville numbers. Here we consider more general functions which decompose elements from an arbitrary local field into Liouville numbers. Several examples and applications are given. As an illustration, we prove that for any real numbers $\alpha _{1},\thinspace \alpha _{2},\ldots ,\thinspace \alpha _{N}$, not equal to 0 or 1, there exist uncountably many Liouville numbers $\sigma$ such that $\alpha _{1}^{\sigma },\thinspace \alpha _{2}^{\sigma },\thinspace \ldots ,\thinspace \alpha _{N}^{\sigma }$ are all Liouville numbers.References
- K. Alniaçik, Representation of real numbers as sums of $U_2$-numbers, Acta Arith. 55 (1990), no. 4, 301–310. MR 1069184, DOI 10.4064/aa-55-4-301-310
- Alan Baker, Transcendental number theory, Cambridge University Press, London-New York, 1975. MR 0422171, DOI 10.1017/CBO9780511565977
- N. Bourbaki, Éléments de mathématique. Fasc. XXXIII. Variétés différentielles et analytiques. Fascicule de résultats (Paragraphes 1 à 7), Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1333, Hermann, Paris, 1967 (French). MR 0219078
- P. Erdős, Representations of real numbers as sums and products of Liouville numbers, Michigan Math. J. 9 (1962), 59–60. MR 133300, DOI 10.1307/mmj/1028998621
- Wendell Fleming, Functions of several variables, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1977. MR 0422527, DOI 10.1007/978-1-4684-9461-7
- Neal Koblitz, $p$-adic numbers, $p$-adic analysis, and zeta-functions, 2nd ed., Graduate Texts in Mathematics, vol. 58, Springer-Verlag, New York, 1984. MR 754003, DOI 10.1007/978-1-4612-1112-9
- K. Mahler, Zur Approximation der Exponentialfunktion und del Logarithmus, I, J. Reine Angew. Math. 166 (1932), 118–136.
- Andrew D. Pollington, Sum sets and $U$-numbers, Number theory with an emphasis on the Markoff spectrum (Provo, UT, 1991) Lecture Notes in Pure and Appl. Math., vol. 147, Dekker, New York, 1993, pp. 207–214. MR 1219335
- W. M. Priestley, Sets thick and thin, Amer. Math. Monthly 83 (1976), no. 8, 648–650. MR 417066, DOI 10.2307/2319898
- W. H. Schikhof, Ultrametric calculus, Cambridge Studies in Advanced Mathematics, vol. 4, Cambridge University Press, Cambridge, 1984. An introduction to $p$-adic analysis. MR 791759
- Wolfgang M. Schmidt, On badly approximable numbers and certain games, Trans. Amer. Math. Soc. 123 (1966), 178–199. MR 195595, DOI 10.1090/S0002-9947-1966-0195595-4
- Wolfgang M. Schmidt, Diophantine approximation, Lecture Notes in Mathematics, vol. 785, Springer, Berlin, 1980. MR 568710
- André Weil, Basic number theory, 3rd ed., Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag, New York-Berlin, 1974. MR 0427267, DOI 10.1007/978-3-642-61945-8
Bibliographic Information
- Edward B. Burger
- Affiliation: Department of Mathematics, Williams College, Williamstown, Massachusetts 01267
- Email: Edward.B.Burger@williams.edu
- Received by editor(s): April 6, 1994
- Received by editor(s) in revised form: May 3, 1995
- Communicated by: William W. Adams
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3305-3310
- MSC (1991): Primary 11J61, 11J81
- DOI: https://doi.org/10.1090/S0002-9939-96-03572-1
- MathSciNet review: 1350935