Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators
HTML articles powered by AMS MathViewer
- by Barry Simon
- Proc. Amer. Math. Soc. 124 (1996), 3361-3369
- DOI: https://doi.org/10.1090/S0002-9939-96-03599-X
Abstract:
We provide a short proof of that case of the Gilbert-Pearson theorem that is most often used: That all eigenfunctions bounded implies purely a.c. spectrum. Two appendices illuminate Weidmann’s result that potentials of bounded variation have strictly a.c. spectrum on a half-axis.References
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- H. Behncke, Absolute continuity of Hamiltonians with von Neumann Wigner potentials. II, Manuscripta Math. 71 (1991), no. 2, 163–181. MR 1101267, DOI 10.1007/BF02568400
- P. Briet and E. Mourre, Some resolvent estimates for Sturm-Liouville operators, preprint.
- René Carmona, One-dimensional Schrödinger operators with random or deterministic potentials: new spectral types, J. Funct. Anal. 51 (1983), no. 2, 229–258. MR 701057, DOI 10.1016/0022-1236(83)90027-7
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Joanne Dombrowski and Paul Nevai, Orthogonal polynomials, measures and recurrence relations, SIAM J. Math. Anal. 17 (1986), no. 3, 752–759. MR 838253, DOI 10.1137/0517054
- William F. Donoghue Jr., On the perturbation of spectra, Comm. Pure Appl. Math. 18 (1965), 559–579. MR 190761, DOI 10.1002/cpa.3160180402
- D. J. Gilbert, On subordinacy and analysis of the spectrum of Schrödinger operators with two singular endpoints, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), no. 3-4, 213–229. MR 1014651, DOI 10.1017/S0308210500018680
- D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), no. 1, 30–56. MR 915965, DOI 10.1016/0022-247X(87)90212-5
- D. B. Hinton and J. K. Shaw, Absolutely continuous spectra of second order differential operators with short and long range potentials, SIAM J. Math. Anal. 17 (1986), no. 1, 182–196. MR 819222, DOI 10.1137/0517017
- S. Khan and D. B. Pearson, Subordinacy and spectral theory for infinite matrices, Helv. Phys. Acta 65 (1992), no. 4, 505–527. MR 1179528
- A. Kiselev, Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decreasing potentials, preprint.
- Attila Máté and Paul Nevai, Orthogonal polynomials and absolutely continuous measures, Approximation theory, IV (College Station, Tex., 1983) Academic Press, New York, 1983, pp. 611–617. MR 754400
- D. B. Pearson, Quantum scattering and spectral theory, Techniques of Physics, vol. 9, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1988. MR 1099604
- Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
- B. Simon, Spectral analysis of rank one perturbations and applications, Proc. Mathematical Quantum Theory II: Schrödinger Operators (J. Feldman, R. Froese, and L.M. Rosen, eds.), CRM Proc. Lecture Notes, vol. 8, Amer. Math. Soc., Providence, RI, 1995, pp. 109–149.
- Günter Stolz, Bounded solutions and absolute continuity of Sturm-Liouville operators, J. Math. Anal. Appl. 169 (1992), no. 1, 210–228. MR 1180682, DOI 10.1016/0022-247X(92)90112-Q
- Joachim Weidmann, Zur Spektraltheorie von Sturm-Liouville-Operatoren, Math. Z. 98 (1967), 268–302 (German). MR 213915, DOI 10.1007/BF01112407
- Joachim Weidmann, Absolut stetiges Spektrum bei Sturm-Liouville-Operatoren und Dirac-Systemen, Math. Z. 180 (1982), no. 3, 423–427 (German). MR 664527, DOI 10.1007/BF01214182
- Joachim Weidmann, Spectral theory of ordinary differential operators, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR 923320, DOI 10.1007/BFb0077960
Bibliographic Information
- Barry Simon
- Affiliation: Division of Physics, Mathematics, and Astronomy, California Institute of Technology, 253-37, Pasadena, California 91125
- MR Author ID: 189013
- Email: bsimon@caltech.edu
- Received by editor(s): April 3, 1995
- Received by editor(s) in revised form: April 24, 1995
- Additional Notes: This material is based upon work supported by the National Science Foundation under Grant No. DMS-9401491. The Government has certain rights in this material.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 Barry Simon
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3361-3369
- MSC (1991): Primary 34L40
- DOI: https://doi.org/10.1090/S0002-9939-96-03599-X
- MathSciNet review: 1350963