On the Picard group of a compact flat projective variety
HTML articles powered by AMS MathViewer
- by N. J. Michelacakis
- Proc. Amer. Math. Soc. 124 (1996), 3315-3323
- DOI: https://doi.org/10.1090/S0002-9939-96-03709-4
- PDF | Request permission
Abstract:
In this note, we describe the Picard group of the class of compact, smooth, flat, projective varieties. In view of Charlap’s work and Johnson’s characterization, we construct line bundles over such manifolds as the holonomy-invariant elements of the Neron-Severi group of a projective flat torus covering the manifold. We prove a generalized version of the Appell-Humbert theorem which shows that the nontrivial elements of the Picard group are precisely those coming from the above construction. Our calculations finally give an estimate for the set of positive line bundles for such varieties.References
- Bieberbach, L: Über die Bewegungsgruppen der Euklidischen Räume $I$; Math. Ann. 70 (1911), 297.
- Bieberbach, L: Über die Bewegungsgruppen der Euklidischen Räume $II$; Math. Ann. 72 (1912), 400.
- Leonard S. Charlap, Compact flat riemannian manifolds. I, Ann. of Math. (2) 81 (1965), 15–30. MR 170305, DOI 10.2307/1970379
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- F. E. A. Johnson, Flat algebraic manifolds, Geometry of low-dimensional manifolds, 1 (Durham, 1989) London Math. Soc. Lecture Note Ser., vol. 150, Cambridge Univ. Press, Cambridge, 1990, pp. 73–91. MR 1171892
- Serge Lang, Introduction to algebraic and abelian functions, 2nd ed., Graduate Texts in Mathematics, vol. 89, Springer-Verlag, New York-Berlin, 1982. MR 681120, DOI 10.1007/978-1-4612-5740-0
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- David Mumford, Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, vol. 5, Published for the Tata Institute of Fundamental Research, Bombay by Oxford University Press, London, 1970. MR 0282985
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- T. Venkatarayudu, The $7$-$15$ problem, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 531. MR 0000001, DOI 10.1090/gsm/058
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056
- Joseph A. Wolf, Spaces of constant curvature, McGraw-Hill Book Co., New York-London-Sydney, 1967. MR 0217740
Bibliographic Information
- N. J. Michelacakis
- Affiliation: Rijksuniversiteit Groningen, Afdeling Wiskunde en Informatica, Postbus 800, 9700 AV, Groningen, Netherlands
- Address at time of publication: 59 Parnithos Street, Vrilissia, 15235 Athens, Greece
- Received by editor(s): May 22, 1995
- Communicated by: Peter Li
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 3315-3323
- MSC (1991): Primary 14C22; Secondary 14A10, 14E20
- DOI: https://doi.org/10.1090/S0002-9939-96-03709-4
- MathSciNet review: 1363429